Package ‘timechange’

October 5, 2020

Title Efficient Changing of Date-Times
Version 0.0.2

Description Efficient routines for manipulation of date-time objects while
accounting for time-zones and daylight saving times. The package includes
utilities for updating of date-time components (year, month, day etc.),
modification of time-zones, rounding of date-times, period addition and
subtraction etc. Parts of the 'CCTZ' source code, released under the Apache
2.0 License, are included in this package. See
<https://github.com/google/cctz> for more details.

Depends R (>=3.3)
License GPL-3
Encoding UTF-8
Imports Rcpp (>=0.12)
LinkingTo Rcpp
Suggests testthat, knitr
LazyData true

SystemRequirements A system with zoneinfo data (e.g.
/usr/share/zoneinfo) as well as a recent-enough C++11 compiler
(such as g++-4.8 or later). On Windows the zoneinfo included
with R is used.

BugReports https://github.com/vspinu/timechange/issues

URL https://github.com/vspinu/timechange/
RoxygenNote 7.1.1
NeedsCompilation yes

Author Vitalie Spinu [aut, cre],
Google Inc. [ctb, cph]

Maintainer Vitalie Spinu <spinuvit@gmail.com>
Repository CRAN
Date/Publication 2020-10-05 09:40:02 UTC


https://github.com/vspinu/timechange/issues
https://github.com/vspinu/timechange/

2 time-zones

R topics documented:

timechange-package . . . . . . . . . .. 2
HME-ZONES . .« v v v v v e e e e e e e e e e e e e e e e e e e e e e e 2
time_add . . .. L 4
HME_ZEL . . . . . o o e e e e e e e e e 6
time_round . . . ... L e e 7
time_update . . . . . .. .. e 11

Index 13

timechange-package Package timechange
Description

Utilities for efficient updating of date-times components while accounting for time-zones and day-
light saving times. When it makes sense functions provide a refined control of what happens in
ambiguous situations through roll_month and roll_dst arguments.

Author(s)

Vitalie Spinu (<spinuvit@gmail.com>)

See Also
Useful links:

e https://github.com/vspinu/timechange/
* Report bugs at https://github.com/vspinu/timechange/issues

time-zones Time-zone manipulation

Description

time_at_tz returns a date-time as it would appear in a different time zone. The actual moment of
time measured does not change, just the time zone it is measured in. time_at_tz defaults to the
Universal Coordinated time zone (UTC) when an unrecognized time zone is supplied.

time_force_tz returns the date-time that has the same clock time as input time, but in the new time
zone. Although the new date-time has the same clock time (e.g. the same values in the seconds,
minutes, hours, etc.) it is a different moment of time than the input date-time. Computation is
vectorized over both time and tz arguments.

time_clock_at_tz retrieves day clock time in specified time zones. Computation is vectorized
over both dt and tz arguments, tz defaults to the timezone of time.


https://github.com/vspinu/timechange/
https://github.com/vspinu/timechange/issues

time-zones 3

Usage

time_at_tz(time, tz = "UTC")

time_force_tz(time, tz = "UTC", tzout = tz[[1]], roll_dst = "boundary")

time_clock_at_tz(time, tz = NULL, units = "secs")
Arguments
time a date-time object (POSIXct, POSIXIt, Date) or a list of date-time objects. When

a list, all contained elements are updated the new list is returned.

tz a character string containing the time zone to convert to. R must recognize the
name contained in the string as a time zone on your system. For time_force_tz
and time_clock_at_tzs, tz can be a vector of heterogeneous time-zones, in
which case time and tz arguments are paired. If time and tz lengths differ, the
smaller one is recycled according with usual R conventions.

tzout timezone of the output date-time vector. Meaningful only when tz argument is
a vector of heterogenuous time-zones. This argument is necessary because R
date-time vectors cannot hold elements with different time-zones.

roll_dst same as in time_add which see.
units passed directly to as.difftime().
Value

a POSIXct object with the updated time zone

Examples

X <- as.POSIXct("2009-08-07 00:00:00", tz = "America/New_York")
time_at_tz(x, "UTC")

time_force_tz(x, "UTC")

time_force_tz(x, "Europe/Amsterdam”)

## DST skip:

y <- as.POSIXct(”2010-03-14 02:05:05", tz = "UTC")

time_force_tz(y, "America/New_York", roll = "boundary")
time_force_tz(y, "America/New_York"”, roll = "first")
time_force_tz(y, "America/New_York"”, roll = "last")

time_force_tz(y, "America/New_York", roll = "NA")

## Heterogeneous time-zones:

X <- as.POSIXct(c("2009-08-07 00:00:01", "2009-08-07 01:02:03"), tz = "UTC")
time_force_tz(x, tz = c("America/New_York", "Europe/Amsterdam”))

time_force_tz(x, tz = c("America/New_York"”, "Europe/Amsterdam”), tzout = "America/New_York")

x <- as.POSIXct("2009-08-07 00:00:01", tz = "UTC")



4 time_add

time_force_tz(x, tz = c("America/New_York", "Europe/Amsterdam”))
## Local clock:

X <- as.POSIXct(c("2009-08-07 01:02:03", "2009-08-07 10:20:30"), tz = "UTC")
time_clock_at_tz(x, units = "secs")

time_clock_at_tz(x, units = "hours")

time_clock_at_tz(x, "Europe/Amsterdam”)

X <- as.POSIXct("2009-08-07 @1:02:03", tz = "UTC")
time_clock_at_tz(x, tz = c("America/New_York", "Europe/Amsterdam”, "Asia/Shanghai”), unit = "hours")

time_add Arithmetics with periods

Description

Add periods to date-time objects. Periods track the change in the "clock time" between two civil
times. They are measured in common civil time units: years, months, days, hours, minutes, and
seconds.

Arithmetic operations with multiple period units (years, months etc) are applied in decreasing size
order, from year to second. Thus time_add(x,months =1,days = 3) first adds 1 to x and then 3
days.

Generally period arithmetic is undefined due to the irregular nature of civil time and complexities
with DST transitions. ‘timechange‘ allows for a refined control of what happens when an addition
of irregular periods (years, months, days) results in "unclear" date.

Let’s start with an example. What happens when you add "1 month 3 days" to "2000-01-31
01:02:03"? ‘timechange‘ operates by applying larger periods first. First months are added1 + 1
= February which results in non-existent time of 2000-02-31 01:02:03. Here the rol1l_month ad-
justment kicks in:

* skip - no adjustment is done to the simple arithmetic operations (the gap is skipped as if
it’s not there. Thus, 2000-01-31 01:02:03 + 1 month + 3 days is equivalent to 2000-01-
01 01:02:03 + 1 month + 31 days + 3 days resulting in 2000-03-05 01:02:03.

* NA - if any of the intermediate additions result in non-existent dates NA is produced. This is
how arithmetic in lubridate operates.

* boundary - if an intermediate computation falls in a gap, the date is adjusted to the next valid
time. Thus, 2000-01-31 01:02:03 + month = 2000-03-01 00:00:00.

* next - is like boundary but preserves the smaller units. Thus, 2000-01-31 01:02:03 + 1 month = 2000-
03-01 01:02:03.

* prev - is like next but instead of rolling forward to the first day of the month, it rolls back to
the last valid day of the previous month. Thus, 2000-01-31 01:02:03 + 1 month = 2000-02-
28 01:02:03. This is the default.



time_add 5

Usage
time_add(

time,

periods = NULL,
years = NULL,
months = NULL,
weeks = NULL,
days = NULL,
hours = NULL,

minutes = NULL,
seconds = NULL,
roll_month = "last",
roll_dst = "first”

)

time_subtract(
time,
periods = NULL,
years = NULL,
months = NULL,
weeks = NULL,
days = NULL,
hours = NULL,

minutes = NULL,
seconds = NULL,
roll_month = "last",
roll_dst = "last”

)
Arguments
time date-time object
periods string of units to add/subtract (not yet implemented) or a named list of the form

list(years=1,months=2,...).

years, months, weeks, days, hours, minutes, seconds
Units to be added to time. Each unit except for seconds must be expressed as
integer values.

roll_month controls how addition of months and years behaves when standard arithmetic
rules exceed limits of the resulting date’s month. See "Details" for the descrip-
tion of possible values.

roll_dst controls how to adjust the updated time if it falls within a DST transition inter-
vals. See the "Details".

Examples

# Addition



6 time_get

## Month gap

X <- as.POSIXct("2000-01-31 01:02:03", tz = "America/Chicago”)
time_add(x, months = 1, roll_month = "first")

time_add(x, months = 1, roll_month = "last")

time_add(x, months = 1, roll_month = "boundary")
time_add(x, months = 1, roll_month = "skip")

time_add(x, months = 1, roll_month = "NA")

time_add(x, months = 1, days = 3, roll_month = "first")
time_add(x, months = 1, days = 3, roll_month = "last")
time_add(x, months = 1, days = 3, roll_month = "boundary")
time_add(x, months = 1, days = 3, roll_month = "skip")
time_add(x, months = 1, days = 3, roll_month = "NA")

w w w w

## DST gap

X <- as.POSIX1t("2010-03-14 01:02:03", tz = "America/Chicago”)
time_add(x, hours = 1, minutes = 50, roll_dst = "first")
time_add(x, hours = 1, minutes = 50, roll_dst = "last")
time_add(x, hours = 1, minutes = 50, roll_dst = "boundary")
time_add(x, hours = 1, minutes = 50, roll_dst = "skip")
time_add(x, hours = 1, minutes = 50, roll_dst = "NA")

# SUBTRACTION

## Month gap

X <- as.POSIXct("2000-03-31 01:02:03", tz = "America/Chicago”)
time_subtract(x, months = 1, roll_month = "first")
time_subtract(x, months = 1, roll_month = "last")
time_subtract(x, months = 1, roll_month = "boundary")
time_subtract(x, months = 1, roll_month = "skip")
time_subtract(x, months = 1, roll_month = "NA")

time_subtract(x, months = 1, days = 3, roll_month = "first")
time_subtract(x, months = 1, days = 3, roll_month = "last")
time_subtract(x, months = 1, days = 3, roll_month = "boundary")
time_subtract(x, months = 1, days = 3

time_subtract(x, months = 1 3

, roll_month = "skip")
, days = 3, roll_month = "NA")

## DST gap

y <- as.POSIX1t("2010-03-15 @01:02:03", tz = "America/Chicago")
time_subtract(y, hours = 22, minutes = 50, roll_dst = "first")
time_subtract(y, hours = 22, minutes = 50, roll_dst = "last")
time_subtract(y, hours = 22, minutes = 50, roll_dst = "boundary")
time_subtract(y, hours = 22, minutes = 50, roll_dst = "skip")
time_subtract(y, hours = 22, minutes = 50, roll_dst = "NA")

time_get Get components of a date-time object

Description

Get components of a date-time object



time_round

Usage

time_get(
time,

components = c("year”, "month”, "yday”, "mday”, "wday", "hour”, "minute”, "second"),
week_start = getOption("timechange.week_start”, 1)

)

Arguments
time

components

week_start

Value

a date-time object

a character vector of components to return. Component is one of "year", "month",
n n n " " " " " n n

"yday", "day", "mday", "wday", "hour", "minute", "second" where "day" is the
same as "mday".

week starting day (Default is 1, Monday). Set timechange.week_start option
to change this globally.

A data.frame of the requested components

Examples

x <- as.POSIXct("2019-02-03")

time_get(x)

time_round

Round, floor and ceiling for date-time objects

Description

timechange provides rounding to the nearest unit or multiple of a unit. Units can be specified
flexibly as strings; all common abbreviations are supported - secs, min, mins, 2 minutes, 3 years,

2s, 1d etc.

time_round() rounds a date-time to the nearest value of the specified time unit. For rounding date-
times which is exactly halfway between two consecutive units, the convention is to round up. Note
that this is in line with the behavior of R’s base: : round.POSIXt () function but does not follow the
convention of the base base: : round() function which "rounds to the even digit" per IEC 60559.

time_floor rounds down a date-time to the nearest lower boundary of the specified time unit.

time_ceiling() rounds up the date-time to the nearest boundary of the specified time unit.



8 time_round

Usage
time_round(
time,
unit = "second”,
week_start = getOption("timechange.week_start”, 1)
)
time_floor(
time,
unit = "seconds”,
week_start = getOption("timechange.week_start”, 1)
)
time_ceiling(
time,
unit = "seconds”,

change_on_boundary = inherits(time, "Date"”),
week_start = getOption("timechange.week_start”, 1)

)
Arguments

time a date-time vector (Date, POSIXct or POSIX1t)

unit a character string specifying a time unit or a multiple of a unit. Valid base
periods for civil time rounding are second, minute, hour, day, week, month
bimonth, quarter, season, halfyear and year. The only unit for absolute
time rounding is asecond. Other absolute units can be achieved with multiples
of asecond ("60a", "3600a" etc). See "Details" and examples. Arbitrary unique
English abbreviations are allowed. With one letter abbreviations are supported,
including the strptime formats "y", "m", "d", "M", "H", "S". Multi-unit round-
ing of weeks is currently not supported.

week_start When unit is weeks, this is the first day of the week. Defaults to 1 (Monday).

change_on_boundary

If NULL (the default) don’t change instants on the boundary (time_ceiling(ymd_hms('2000-01-01
00:00:00"')) is 2000-01-01 00:00:00), but round up Date objects to the next

boundary (time_ceiling(ymd("2000-01-01"), "month") is "2000-02-01").

When TRUE, instants on the boundary are rounded up to the next boundary.

When FALSE, date-time on the boundary are never rounded up (this was the

default for lubridate prior to v1.6.0. See section Rounding Up Date Objects

below for more details.

Value

An object of the same class as the input object. When input is a Date object and unit is smaller than
day a POSIXct object is returned.



time_round 9

Civil Time vs Absolute Time rounding

Rounding in civil time is done on actual clock time (ymdHMS) and is affected by civil time irregu-
larities like DST. One important characteristic of civil time rounding is that floor (ceiling) does not
produce civil times that are bigger (smaller) than the rounded civil time.

Absolute time rounding (with aseconds) is done on the absolute time (number of seconds since
origin), Thus, rounding of aseconds allows for fractional seconds and multi-units larger than 60.
See examples of rounding around DST transition where rounding in civil time does not give same
result as rounding with the corresponding X aseconds.

Please note that absolute rounding to fractions smaller than 1ms will result to large precision errors
due to the floating point representation of the POSIXct objects.

Ceiling of Date objects
By default rounding up Date objects follows 3 steps:

1. Convert to an instant representing lower bound of the Date: 2000-01-01 —>2000-01-01 00:00:00

2. Round up to the next closest rounding unit boundary. For example, if the rounding unit is
month then next closest boundary of 2000-01-01 is 2000-02-01 00:00:00.

The motivation for this is that the "partial" 2000-01-0@1 is conceptually an interval (2000-
01-01 00:00:00 — 2000-01-02 00:00:00) and the day hasn’t started clocking yet at the exact
boundary 00:00:00. Thus, it seems wrong to round up a day to its lower boundary.

The behavior on the boundary can be changed by setting change_on_boundary to a non-NULL
value.

3. If rounding unit is smaller than a day, return the instant from step 2 (POSIXct), otherwise
convert to and return a Date object.

See Also

base: :round()

Examples

## print fractional seconds
options(digits.secs=6)

X <- as.POSIXct("2009-08-03 12:01:59.23")
time_round(x, ".5 asec")

time_round(x, "sec"

time_round(x, "second")

time_round(x, "asecond")

time_round(x, "minute")

time_round(x, "5 mins")

time_round(x, "5M") # "M" for minute "m" for month
time_round(x, "hour™")

time_round(x, "2 hours")

time_round(x, "2H")

time_round(x, "day")

time_round(x, "week")



10

time_round

time_round(x, "month")

time_round(x, "bimonth")

time_round(x, "quarter”) == time_round(x, "3 months")
time_round(x, "halfyear")

time_round(x, "year")

X <- as.POSIXct("2009-08-03 12:01:59.23")
time_floor(x, ".1 asec")
time_floor(x, "second”)
time_floor(x, "minute”)
time_floor(x, "M")
time_floor(x, "hour")
time_floor(x, "day")
time_floor(x, "week")
time_floor(x, "m")
time_floor(x, "month")
time_floor(x, "bimonth")
time_floor(x, "quarter")
time_floor(x, "season")
time_floor(x, "halfyear")
time_floor(x, "year")

X <- as.POSIXct("2009-08-03 12:01:59.23")
time_ceiling(x, ".1 asec”)
time_ceiling(x, "second”)

time_ceiling(x, "minute")

time_ceiling(x, "5 mins")

time_ceiling(x, "hour")

time_ceiling(x, "day")

time_ceiling(x, "week")

time_ceiling(x, "month")

time_ceiling(x, "bimonth"”) == time_ceiling(x, "2 months")
time_ceiling(x, "quarter”)
time_ceiling(x, "season”)

time_ceiling(x, "halfyear")
time_ceiling(x, "year")

## behavior on the boundary

X <- as.Date("2000-01-01")

time_ceiling(x, "month")

time_ceiling(x, "month”, change_on_boundary = FALSE)

## As of R 3.4.2 POSIXct printing of fractional numbers is wrong
as.POSIXct("2009-08-03 12:01:59.3", tz = "UTC") ## -> "2009-08-03 12:01:59.2 UTC"
time_ceiling(x, ".1 asec") ## -> "2009-08-03 12:01:59.2 UTC"

## Civil Time vs Absolute Time Rounding

# "2014-11-02 01:59:59.5 EDT" before 1h backroll at 2AM
x <- .POSIXct(1414907999.5, tz = "America/New_York")

X

time_ceiling(x, "hour") # "2014-11-02 02:00:00 EST"
time_ceiling(x, "minute")



time_update 11

time_ceiling(x, "sec")

difftime(time_ceiling(x, "s"), x)

time_ceiling(x, "1a") # "2014-11-02 01:00:00 EST"
difftime(time_ceiling(x, "a"), x)

# "2014-11-02 01:00:00.5 EST" after 1h backroll at 2AM

X <- .POSIXct(1414908000.5, tz = "America/New_York")

X

time_floor(x, "hour") # "2014-11-02 01:00:00 EST"
difftime(time_floor(x, "hour"), x)

time_floor(x, "3600a") # "2014-11-02 01:00:00 EST" - 25m
difftime(time_floor(x, "a"), x)

time_update Update components of a date-time object

Description

Update components of a date-time object

Usage

time_update(
time,
updates = NULL,
year = NULL,
month = NULL,
yday = NULL,
day = NULL,
mday = NULL,
wday = NULL,
hour = NULL,

minute = NULL,

second = NULL,

tz = NULL,

roll_month = "last",

roll_dst = "boundary”,

week_start = getOption("timechange.week_start”, 1)

)
Arguments
time a date-time object
updates a named list of components

year, month, yday, wday, mday, day, hour, minute, second
components of the date-time to be updated. day is equivalent to mday. All
components except second will be converted to integer.



12 time_update

tz time zone component (a singleton character vector)
roll_month, roll_dst
See time_add().

week_start first day of the week (default is 1, Monday). Set timechange.week_start op-
tion to change this globally.

Value

A date-time with the requested elements updated. Retain its original class unless the original class
is Date and at least one of the hour, minute, second or tz is supplied, in which case a POSIXct
object is returned.

Examples

date <- as.Date("2009-02-10")

time_update(date, year = 2010, month = 1, mday = 1)
time_update(date, year = 2010, month = 13, mday = 1)
time_update(date, minute = 10, second = 3)

time_update(date, minute = 10, second = 3, tz = "America/New_York")

time <- as.POSIXct("2015-02-03 01:02:03", tz = "America/New_York")
time_update(time, year = 2016, yday = 10)

time_update(time, year = 2016, yday = 10, tz = "Europe/Amsterdam”)
time_update(time, second = 30, tz = "America/New_York")



Index

as.difftime(), 3

base::round(), 7, 9
base: :round.POSIXt(), 7

time-zones, 2

time_add, 4

time_add(), 12

time_at_tz (time-zones), 2
time_ceiling (time_round), 7
time_clock_at_tz (time-zones), 2
time_floor (time_round), 7
time_force_tz (time-zones), 2
time_get, 6

time_round, 7

time_subtract (time_add), 4
time_update, 11

timechange (timechange-package), 2

timechange-package, 2

13



	timechange-package
	time-zones
	time_add
	time_get
	time_round
	time_update
	Index

