Tidyndr

R-CMD-check Codecov test coverage

The goal of {tidyndr} is to provide a specialized, simple and easy to use functions that wrap around existing functions in R for manipulation of the NDR patient line-list file allowing the user to focus on the tasks to be completed rather than the code/formula details.

The functions presented are similar to the PEPFAR MER indicators and are currently grouped into four categories:

Installation

This package is currently not available on CRAN but you can install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("stephenbalogun/tidyndr",
build_vignette = TRUE)

Usage

library(tidyndr)
#> Attaching package: 'tidyndr' 
#> A package for analysis of the front-end patient-level data from the Nigeria National Data Repository.

read_ndr

read_ndr() reads the downloaded “.csv” file into R using vroom::vroom() behind the scene and passing appropriate column types to the col_types argument. It also formats the variable names using the snakecase style.

## read from a local file path (not run)

# file_path <- system.file("extdata", "ndr_example.csv", package = "tidyndr")

# read_ndr(file_path, time_stamp = "2021-02-15")

### read line-list available on the internet
path <- "https://raw.githubusercontent.com/stephenbalogun/example_files/main/ndr_example.csv"

ndr_example <- read_ndr(path, time_stamp = "2021-02-20")
#> 
#> Three new variables created: 
#> [1] `date_lost` 
#> [2] `appointment_date 
#> [2] `current_status

Treatment Indicators

The functions included in this group are:

## Subset "TX_NEW"
tx_new(ndr_example)
#> Warning: One or more parsing issues, see `problems()` for details
#> # A tibble: 5,239 x 52
#>    ip     state lga   facility datim_code sex   patient_identif~ hospital_number
#>    <fct>  <fct> <fct> <fct>    <fct>      <fct> <chr>            <chr>          
#>  1 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 1004       0003           
#>  2 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 3008       0003           
#>  3 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 2008       0003           
#>  4 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 30012      0003           
#>  5 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 20011      0005           
#>  6 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 30025      0008           
#>  7 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 30026      0007           
#>  8 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 30037      00013          
#>  9 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 30039      00014          
#> 10 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 30047      00019          
#> # ... with 5,229 more rows, and 44 more variables: date_of_birth <date>,
#> #   age_at_art_initiation <dbl>, current_age <dbl>, art_start_date <date>,
#> #   art_start_date_source <fct>, last_drug_pickup_date <date>,
#> #   last_drug_pickup_date_q1 <date>, last_drug_pickup_date_q2 <date>,
#> #   last_drug_pickup_date_q3 <date>, last_drug_pickup_date_q4 <date>,
#> #   last_regimen <fct>, last_clinic_visit_date <date>,
#> #   days_of_arv_refill <dbl>, pregnancy_status <fct>, current_viral_load <dbl>,
#> #   date_of_current_viral_load <date>, current_viral_load_q1 <dbl>,
#> #   date_of_current_viral_load_q1 <date>, current_viral_load_q2 <dbl>,
#> #   date_of_current_viral_load_q2 <date>, current_viral_load_q3 <dbl>,
#> #   date_of_current_viral_load_q3 <date>, current_viral_load_q4 <dbl>,
#> #   date_of_current_viral_load_q4 <date>, current_status_28_days <fct>,
#> #   current_status_90_days <fct>, current_status_q1_28_days <fct>,
#> #   current_status_q1_90_days <fct>, current_status_q2_28_days <fct>,
#> #   current_status_q2_90_days <fct>, current_status_q3_28_days <fct>,
#> #   current_status_q3_90_days <fct>, current_status_q4_28_days <fct>,
#> #   current_status_q4_90_days <fct>, patient_has_died <lgl>,
#> #   patient_deceased_date <date>, patient_transferred_out <lgl>,
#> #   transferred_out_date <date>, patient_transferred_in <lgl>,
#> #   transferred_in_date <date>, x49 <chr>, date_lost <date>,
#> #   appointment_date <date>, current_status <chr>

## Subset "TX_CURR" for a state
ndr_example %>%
  tx_curr(states = "State 1")
#> # A tibble: 3,726 x 52
#>    ip     state lga   facility datim_code sex   patient_identif~ hospital_number
#>    <fct>  <fct> <fct> <fct>    <fct>      <fct> <chr>            <chr>          
#>  1 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 1001       0001           
#>  2 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 1002       0001           
#>  3 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 1004       0003           
#>  4 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 1005       0004           
#>  5 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 1009       0001           
#>  6 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 10010      0001           
#>  7 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 10011      0002           
#>  8 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 10014      0005           
#>  9 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 10022      0007           
#> 10 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 10027      00013          
#> # ... with 3,716 more rows, and 44 more variables: date_of_birth <date>,
#> #   age_at_art_initiation <dbl>, current_age <dbl>, art_start_date <date>,
#> #   art_start_date_source <fct>, last_drug_pickup_date <date>,
#> #   last_drug_pickup_date_q1 <date>, last_drug_pickup_date_q2 <date>,
#> #   last_drug_pickup_date_q3 <date>, last_drug_pickup_date_q4 <date>,
#> #   last_regimen <fct>, last_clinic_visit_date <date>,
#> #   days_of_arv_refill <dbl>, pregnancy_status <fct>, current_viral_load <dbl>,
#> #   date_of_current_viral_load <date>, current_viral_load_q1 <dbl>,
#> #   date_of_current_viral_load_q1 <date>, current_viral_load_q2 <dbl>,
#> #   date_of_current_viral_load_q2 <date>, current_viral_load_q3 <dbl>,
#> #   date_of_current_viral_load_q3 <date>, current_viral_load_q4 <dbl>,
#> #   date_of_current_viral_load_q4 <date>, current_status_28_days <fct>,
#> #   current_status_90_days <fct>, current_status_q1_28_days <fct>,
#> #   current_status_q1_90_days <fct>, current_status_q2_28_days <fct>,
#> #   current_status_q2_90_days <fct>, current_status_q3_28_days <fct>,
#> #   current_status_q3_90_days <fct>, current_status_q4_28_days <fct>,
#> #   current_status_q4_90_days <fct>, patient_has_died <lgl>,
#> #   patient_deceased_date <date>, patient_transferred_out <lgl>,
#> #   transferred_out_date <date>, patient_transferred_in <lgl>,
#> #   transferred_in_date <date>, x49 <chr>, date_lost <date>,
#> #   appointment_date <date>, current_status <chr>

## Generate line-list of clients with medication refill in January 2021 for a facility (Facility 1)
ndr_example %>%
  tx_appointment(from = "2021-01-01",
                 to = "2021-01-31",
                 facilities = "Facility 1")
#> # A tibble: 413 x 52
#>    ip     state lga   facility datim_code sex   patient_identif~ hospital_number
#>    <fct>  <fct> <fct> <fct>    <fct>      <fct> <chr>            <chr>          
#>  1 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 2003       0002           
#>  2 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 3008       0003           
#>  3 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 20016      0004           
#>  4 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 30026      0007           
#>  5 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 10016      0003           
#>  6 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 20064      00010          
#>  7 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 200122     00020          
#>  8 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 200131     00021          
#>  9 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 100131     00019          
#> 10 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 200256     00045          
#> # ... with 403 more rows, and 44 more variables: date_of_birth <date>,
#> #   age_at_art_initiation <dbl>, current_age <dbl>, art_start_date <date>,
#> #   art_start_date_source <fct>, last_drug_pickup_date <date>,
#> #   last_drug_pickup_date_q1 <date>, last_drug_pickup_date_q2 <date>,
#> #   last_drug_pickup_date_q3 <date>, last_drug_pickup_date_q4 <date>,
#> #   last_regimen <fct>, last_clinic_visit_date <date>,
#> #   days_of_arv_refill <dbl>, pregnancy_status <fct>, current_viral_load <dbl>,
#> #   date_of_current_viral_load <date>, current_viral_load_q1 <dbl>,
#> #   date_of_current_viral_load_q1 <date>, current_viral_load_q2 <dbl>,
#> #   date_of_current_viral_load_q2 <date>, current_viral_load_q3 <dbl>,
#> #   date_of_current_viral_load_q3 <date>, current_viral_load_q4 <dbl>,
#> #   date_of_current_viral_load_q4 <date>, current_status_28_days <fct>,
#> #   current_status_90_days <fct>, current_status_q1_28_days <fct>,
#> #   current_status_q1_90_days <fct>, current_status_q2_28_days <fct>,
#> #   current_status_q2_90_days <fct>, current_status_q3_28_days <fct>,
#> #   current_status_q3_90_days <fct>, current_status_q4_28_days <fct>,
#> #   current_status_q4_90_days <fct>, patient_has_died <lgl>,
#> #   patient_deceased_date <date>, patient_transferred_out <lgl>,
#> #   transferred_out_date <date>, patient_transferred_in <lgl>,
#> #   transferred_in_date <date>, x49 <chr>, date_lost <date>,
#> #   appointment_date <date>, current_status <chr>

## Generate list of clients who were active at the beginning of FY21 but became inactive at the end of Q1 of FY21.
  tx_ml(new_data = ndr_example,
        from = "2020-10-01",
        to = "2020-12-31")
#> # A tibble: 2,593 x 52
#>    ip     state lga   facility datim_code sex   patient_identif~ hospital_number
#>    <fct>  <fct> <fct> <fct>    <fct>      <fct> <chr>            <chr>          
#>  1 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 1007       0003           
#>  2 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 30025      0008           
#>  3 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 20041      0002           
#>  4 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 20050      00020          
#>  5 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 300107     00040          
#>  6 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 20090      00025          
#>  7 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 300111     00042          
#>  8 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 10065      00011          
#>  9 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 200118     00047          
#> 10 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 10073      00023          
#> # ... with 2,583 more rows, and 44 more variables: date_of_birth <date>,
#> #   age_at_art_initiation <dbl>, current_age <dbl>, art_start_date <date>,
#> #   art_start_date_source <fct>, last_drug_pickup_date <date>,
#> #   last_drug_pickup_date_q1 <date>, last_drug_pickup_date_q2 <date>,
#> #   last_drug_pickup_date_q3 <date>, last_drug_pickup_date_q4 <date>,
#> #   last_regimen <fct>, last_clinic_visit_date <date>,
#> #   days_of_arv_refill <dbl>, pregnancy_status <fct>, current_viral_load <dbl>,
#> #   date_of_current_viral_load <date>, current_viral_load_q1 <dbl>,
#> #   date_of_current_viral_load_q1 <date>, current_viral_load_q2 <dbl>,
#> #   date_of_current_viral_load_q2 <date>, current_viral_load_q3 <dbl>,
#> #   date_of_current_viral_load_q3 <date>, current_viral_load_q4 <dbl>,
#> #   date_of_current_viral_load_q4 <date>, current_status_28_days <fct>,
#> #   current_status_90_days <fct>, current_status_q1_28_days <fct>,
#> #   current_status_q1_90_days <fct>, current_status_q2_28_days <fct>,
#> #   current_status_q2_90_days <fct>, current_status_q3_28_days <fct>,
#> #   current_status_q3_90_days <fct>, current_status_q4_28_days <fct>,
#> #   current_status_q4_90_days <fct>, patient_has_died <lgl>,
#> #   patient_deceased_date <date>, patient_transferred_out <lgl>,
#> #   transferred_out_date <date>, patient_transferred_in <lgl>,
#> #   transferred_in_date <date>, x49 <chr>, date_lost <date>,
#> #   appointment_date <date>, current_status <chr>

Viral Suppression Indicators

The tx_vl_eligible(), tx_pvls_den() and the tx_pvls_num() functions come in handy when you need to generate the line-list of clients who are eligible for viral load test at a given point for a given facility/state, those who have a valid viral load result (not more than 1 year for people aged 20 years and above and not more than 6 months for paediatrics and adolescents less or equal to 19 years), and those who are virally suppressed (out of those with valid viral load results). When the sample = TRUE attribute is supplied to the tx_vl_eligible() function, it generates the line-list of only those who are due for a viral load test out of all those who are eligible.

## Generate list of clients who are eligible for VL (i.e. expected to have a documented VL result)
ndr_example %>%
  tx_vl_eligible()
#> # A tibble: 14,068 x 52
#>    ip     state lga   facility datim_code sex   patient_identif~ hospital_number
#>    <fct>  <fct> <fct> <fct>    <fct>      <fct> <chr>            <chr>          
#>  1 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 1001       0001           
#>  2 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 2001       0001           
#>  3 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 3001       0001           
#>  4 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 1002       0001           
#>  5 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 3005       0001           
#>  6 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 2005       0001           
#>  7 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 3006       0002           
#>  8 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 1005       0004           
#>  9 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 3009       0004           
#> 10 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 2009       0001           
#> # ... with 14,058 more rows, and 44 more variables: date_of_birth <date>,
#> #   age_at_art_initiation <dbl>, current_age <dbl>, art_start_date <date>,
#> #   art_start_date_source <fct>, last_drug_pickup_date <date>,
#> #   last_drug_pickup_date_q1 <date>, last_drug_pickup_date_q2 <date>,
#> #   last_drug_pickup_date_q3 <date>, last_drug_pickup_date_q4 <date>,
#> #   last_regimen <fct>, last_clinic_visit_date <date>,
#> #   days_of_arv_refill <dbl>, pregnancy_status <fct>, current_viral_load <dbl>,
#> #   date_of_current_viral_load <date>, current_viral_load_q1 <dbl>,
#> #   date_of_current_viral_load_q1 <date>, current_viral_load_q2 <dbl>,
#> #   date_of_current_viral_load_q2 <date>, current_viral_load_q3 <dbl>,
#> #   date_of_current_viral_load_q3 <date>, current_viral_load_q4 <dbl>,
#> #   date_of_current_viral_load_q4 <date>, current_status_28_days <fct>,
#> #   current_status_90_days <fct>, current_status_q1_28_days <fct>,
#> #   current_status_q1_90_days <fct>, current_status_q2_28_days <fct>,
#> #   current_status_q2_90_days <fct>, current_status_q3_28_days <fct>,
#> #   current_status_q3_90_days <fct>, current_status_q4_28_days <fct>,
#> #   current_status_q4_90_days <fct>, patient_has_died <lgl>,
#> #   patient_deceased_date <date>, patient_transferred_out <lgl>,
#> #   transferred_out_date <date>, patient_transferred_in <lgl>,
#> #   transferred_in_date <date>, x49 <chr>, date_lost <date>,
#> #   appointment_date <date>, current_status <chr>

## Generate list of clients that will be expected to have a viral load test done in Q2 of FY21 for "State 2"
ndr_example %>%
  tx_vl_eligible("2021-03-31",
                 states = "State 2",
                 sample = TRUE)
#> # A tibble: 2,360 x 52
#>    ip     state lga   facility datim_code sex   patient_identif~ hospital_number
#>    <fct>  <fct> <fct> <fct>    <fct>      <fct> <chr>            <chr>          
#>  1 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 20012      0001           
#>  2 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 20016      0004           
#>  3 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 20018      0004           
#>  4 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 20021      0008           
#>  5 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 20025      0009           
#>  6 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 20027      0008           
#>  7 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 20033      00011          
#>  8 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 20034      00012          
#>  9 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 20035      00013          
#> 10 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 20037      00015          
#> # ... with 2,350 more rows, and 44 more variables: date_of_birth <date>,
#> #   age_at_art_initiation <dbl>, current_age <dbl>, art_start_date <date>,
#> #   art_start_date_source <fct>, last_drug_pickup_date <date>,
#> #   last_drug_pickup_date_q1 <date>, last_drug_pickup_date_q2 <date>,
#> #   last_drug_pickup_date_q3 <date>, last_drug_pickup_date_q4 <date>,
#> #   last_regimen <fct>, last_clinic_visit_date <date>,
#> #   days_of_arv_refill <dbl>, pregnancy_status <fct>, current_viral_load <dbl>,
#> #   date_of_current_viral_load <date>, current_viral_load_q1 <dbl>,
#> #   date_of_current_viral_load_q1 <date>, current_viral_load_q2 <dbl>,
#> #   date_of_current_viral_load_q2 <date>, current_viral_load_q3 <dbl>,
#> #   date_of_current_viral_load_q3 <date>, current_viral_load_q4 <dbl>,
#> #   date_of_current_viral_load_q4 <date>, current_status_28_days <fct>,
#> #   current_status_90_days <fct>, current_status_q1_28_days <fct>,
#> #   current_status_q1_90_days <fct>, current_status_q2_28_days <fct>,
#> #   current_status_q2_90_days <fct>, current_status_q3_28_days <fct>,
#> #   current_status_q3_90_days <fct>, current_status_q4_28_days <fct>,
#> #   current_status_q4_90_days <fct>, patient_has_died <lgl>,
#> #   patient_deceased_date <date>, patient_transferred_out <lgl>,
#> #   transferred_out_date <date>, patient_transferred_in <lgl>,
#> #   transferred_in_date <date>, x49 <chr>, date_lost <date>,
#> #   appointment_date <date>, current_status <chr>

### Calculate the Viral Load Coverage for State 3
no_of_vl_results <- tx_pvls_den(ndr_example,
                                states = "State 3") %>%
  nrow()
no_of_vl_eligible <- tx_vl_eligible(ndr_example,
                                    states = "State 3") %>%
  nrow()

vl_coverage <- scales::percent(no_of_vl_results / no_of_vl_eligible)

print(vl_coverage)
#> [1] "58%"

For all the ‘Treatment’ and ‘Viral Suppression’ indicators (except tx_ml_outcomes(), which should be use with tx_ml()), you have control over the level of action (state or facility) by supplying to the states and/or facilities arguments the values of interest . For more than one state or facility, combine the values with the c() e.g.

## subset clients that have medication appointment in Q2 of FY21 for "State 1" and "State 3" and are also due for viral load
ndr_example %>%
  tx_appointment(from = "2021-01-01",
                 to = "2021-03-31",
                 states = c("State 1", "State 3")) %>%
  tx_vl_eligible(sample = TRUE)
#> # A tibble: 2,593 x 52
#>    ip     state lga   facility datim_code sex   patient_identif~ hospital_number
#>    <fct>  <fct> <fct> <fct>    <fct>      <fct> <chr>            <chr>          
#>  1 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ M     State 1001       0001           
#>  2 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 3006       0002           
#>  3 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 30027      0009           
#>  4 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 10011      0002           
#>  5 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 30031      00010          
#>  6 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 30034      00011          
#>  7 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 30044      0002           
#>  8 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 30045      00018          
#>  9 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 30049      00021          
#> 10 IP_na~ Stat~ LGA0~ Facilit~ datim_cod~ F     State 10022      0007           
#> # ... with 2,583 more rows, and 44 more variables: date_of_birth <date>,
#> #   age_at_art_initiation <dbl>, current_age <dbl>, art_start_date <date>,
#> #   art_start_date_source <fct>, last_drug_pickup_date <date>,
#> #   last_drug_pickup_date_q1 <date>, last_drug_pickup_date_q2 <date>,
#> #   last_drug_pickup_date_q3 <date>, last_drug_pickup_date_q4 <date>,
#> #   last_regimen <fct>, last_clinic_visit_date <date>,
#> #   days_of_arv_refill <dbl>, pregnancy_status <fct>, current_viral_load <dbl>,
#> #   date_of_current_viral_load <date>, current_viral_load_q1 <dbl>,
#> #   date_of_current_viral_load_q1 <date>, current_viral_load_q2 <dbl>,
#> #   date_of_current_viral_load_q2 <date>, current_viral_load_q3 <dbl>,
#> #   date_of_current_viral_load_q3 <date>, current_viral_load_q4 <dbl>,
#> #   date_of_current_viral_load_q4 <date>, current_status_28_days <fct>,
#> #   current_status_90_days <fct>, current_status_q1_28_days <fct>,
#> #   current_status_q1_90_days <fct>, current_status_q2_28_days <fct>,
#> #   current_status_q2_90_days <fct>, current_status_q3_28_days <fct>,
#> #   current_status_q3_90_days <fct>, current_status_q4_28_days <fct>,
#> #   current_status_q4_90_days <fct>, patient_has_died <lgl>,
#> #   patient_deceased_date <date>, patient_transferred_out <lgl>,
#> #   transferred_out_date <date>, patient_transferred_in <lgl>,
#> #   transferred_in_date <date>, x49 <chr>, date_lost <date>,
#> #   appointment_date <date>, current_status <chr>

Summarising your Indicators

You might want to generate a summary table of all the indicators you have pulled out. The summarise_ndr() (or summarize_ndr()) allows you to do this with ease. It accepts all the line-lists you are interested in creating a summary table for, the level at which you want the summary to be created (country/ip, state or facility), and the names you want to give to each of your summary column.

new <- tx_new(ndr_example)  ## generates line-list of TX_NEW for the FY
curr <- tx_curr(ndr_example) ## generates line-list of currently active clients
ml <- tx_ml(new_data = ndr_example) ## generates line-list of clients who were active at the beginning of the FY but currently inactive

summarise_ndr(new, curr, ml,
              level = "state",
              names = c("tx_new", "tx_curr", "tx_ml"))
#> # A tibble: 4 x 5
#>   ip      state   tx_new tx_curr tx_ml
#>   <chr>   <chr>    <int>   <int> <int>
#> 1 IP_name State 1    662    3726  2923
#> 2 IP_name State 2   1239    5058  4606
#> 3 IP_name State 3   3338    7912  3710
#> 4 Total   -         5239   16696 11240

The disaggregate() allows you to summarise an indicator of interest into finer details based on “age”, “sex” or “pregnancy status”. These are supplied to the by parameter of the function. The default disaggregates the variable of interest at the level of “states” but can also do this at “country/ip”, “lga” or “facility” level when any of this is supplied to the level parameter.

new_clients <- tx_new(ndr_example)  ## generates line-list of TX_NEW for the FY

disaggregate(new_clients,
             by = "current_age")
#> # A tibble: 4 x 14
#>   ip      state   `1-4` `5-9` `10-14` `15-19` `20-24` `25-29` `30-34` `35-39`
#>   <chr>   <chr>   <int> <int>   <int>   <int>   <int>   <int>   <int>   <int>
#> 1 IP_name State 1     4     2       1      19      78     167     169      94
#> 2 IP_name State 2     3     3       5      10     145     317     349     174
#> 3 IP_name State 3    10    12      10     131     436     702     703     474
#> 4 Total   -          17    17      16     160     659    1186    1221     742
#> # ... with 4 more variables: 40-44 <int>, 45-49 <int>, 50+ <int>, Total <dbl>

## disaggregate 'TX_CURR' by sex

ndr_example %>%
  tx_curr() %>%
  disaggregate(by = "sex")
#> # A tibble: 4 x 6
#>   ip      state    Male Female unknown Total
#>   <chr>   <chr>   <int>  <int>   <int> <dbl>
#> 1 IP_name State 1  1102   2624       0  3726
#> 2 IP_name State 2  1606   3451       1  5058
#> 3 IP_name State 3  3386   4526       0  7912
#> 4 Total   -        6094  10601       1 16696

Code of Conduct

Please note that the tidyndr project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.