Package ‘ggdist’

November 30, 2021
Title Visualizations of Distributions and Uncertainty
Version 3.0.1
Date 2021-11-29
Maintainer Matthew Kay <mjskay@northwestern.edu>

Description
Provides primitives for visualizing distributions using 'ggplot2' that are particularly tuned for
visualizing uncertainty in either a frequentist or Bayesian mode. Both analytical distribu-
tions (such as
frequentist confidence distributions or Bayesian priors) and distributions represented as sam-
ples (such as
bootstrap distributions or Bayesian posterior samples) are easily visualized. Visualization primi-
tives include
but are not limited to: points with multiple uncertainty intervals,
eye plots (Spiegelhalter D., 1999) <doi:10.1111/1467-985X.00120>,
density plots, gradient plots, dot plots (Wilkin-
son L., 1999) <doi:10.1080/00031305.1999.10474474>,
quantile dot plots (Kay M., Kola T., Hullman J., Mun-
son S., 2016) <doi:10.1145/2858036.2858558>,
complementary cumulative distribution function
barplots (Fernandes M., Walls L., Munson S., Hull-
man J., Kay M., 2018) <doi:10.1145/3173574.3173718>,
and fit curves with multiple uncertainty ribbons.

Depends R (>=3.5.0)

Imports tidyselect, dplyr (>= 1.0.0), ggplot2 (>= 3.3.5), rlang (>=
0.3.0), scales, grid, HDInterval, tibble, vctrs, withr,
distributional (>= 0.2.2)

Suggests knitr, testthat, vdiffr (>= 1.0.0), svglite, broom (>=
0.5.6), modelr, cowplot, covr, gdtools, rmarkdown, png, fda,
forcats, purrr (>= 0.2.3), tidyr (>= 1.0.0), beeswarm (>=
0.4.0), posterior, pkgdown

License GPL (>=3)
Language en-US

BugReports https://github.com/mjskay/ggdist/issues/new

1

https://doi.org/10.1111/1467-985X.00120
https://doi.org/10.1080/00031305.1999.10474474
https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1145/3173574.3173718
https://github.com/mjskay/ggdist/issues/new

URL https://mjskay.github.io/ggdist/,
https://github.com/mjskay/ggdist/

VignetteBuilder knitr

RoxygenNote 7.1.2

LazyData true

Encoding UTF-8

Collate "ggdist-package.R" ““util.R" *“binning_methods.R"
““curve_interval.R" ““cut_cdf_qi.R" ““data.R" ““distributions.R"
““draw_key_slabinterval.R" ~"geom.R" “*geom_slabinterval.R"
““geom_dotsinterval.R" ““geom_interval.R" ““geom_lineribbon.R"
““geom_pointinterval.R" “*1kjcorr_marginal. R" ““parse_dist.R"
““point_interval.R" “*position_dodgejust.R" ““scale_colour_ramp.R"
““scale_.R" ““stat.R" ““stat_slabinterval.R"
““stat_dist_slabinterval. R" ““stat_sample_slabinterval.R"
““stat_dotsinterval.R" ““stat_pointinterval.R" ““stat_interval.R"

“stat_lineribbon.R" ““student_t.R" ““testthat.R" ““theme_ggdist.R"
““tidy_format_translators.R"

NeedsCompilation no

Author Matthew Kay [aut, cre],
Brenton M. Wiernik [ctb]

Repository CRAN
Date/Publication 2021-11-30 06:50:02 UTC

R topics documented:

ggdist-package L
bin dots e
curve_interval
cut_edf i
find_dotplot_binwidth
geom_dotsinterval Lo
geom_interval Lo
geom_lineribbon oL oL oL
geom_pointinterval
geom_slabinterval oL oo
Ikjcorr_marginal
marginalize lkjcorr oo oo
parse_dist
point_interval L.
position_dodgejust
scales e
scale_colour_ramp
stat_dist_slabinterval
stat_interval L
stat_lineribbon L.

R topics documented:

https://mjskay.github.io/ggdist/
https://github.com/mjskay/ggdist/

ggdist-package 3

stat_pointinterval L. L e e e 75
stat_sample_slabinterval 81
student_t. e e e 89
theme_ggdist 90
tidy-format-translators Lo 91
Index 93
ggdist-package Visualizations of Distributions and Uncertainty
Description

ggdist is an R package that aims to make it easy to integrate popular Bayesian modeling methods
into a tidy data + ggplot workflow.

Details

ggdist is an R package that provides a flexible set of ggplot2 geoms and stats designed espe-
cially for visualizing distributions and uncertainty. It is designed for both frequentist and Bayesian
uncertainty visualization, taking the view that uncertainty visualization can be unified through the
perspective of distribution visualization: for frequentist models, one visualizes confidence distribu-
tions or bootstrap distributions (see vignette("freg-uncertainty-vis")); for Bayesian models,
one visualizes probability distributions (see vignette("tidybayes”,package = "tidybayes")).

The geom_slabinterval() / stat_slabinterval() / stat_dist_slabinterval() family (see
vignette(”slabinterval”)) includes point summaries and intervals, eye plots, half-eye plots,
CCDF bar plots, gradient plots, dotplots, and histograms.

The geom_lineribbon() /stat_lineribbon() /stat_dist_lineribbon() family (see vignette(”lineribbon"))
makes it easy to visualize fit lines with an arbitrary number of uncertainty bands.

bin_dots Bin data values using a dotplot algorithm

Description

Bins the provided data values using one of several dotplot algorithms.

Usage

bin_dots(
X,
Y,
binwidth,
heightratio = 1,
layout = c("bin”, "weave"”, "swarm"),
side = c("topright”, "top", "right", "bottomleft”, "bottom”, "left", "topleft”,

bin_dots

"bottomright”, "both"),
orientation = c("horizontal”, "vertical”, "y", "x")

)

Arguments

X

y
binwidth

heightratio
layout

side

orientation

Value

numeric vector of x values

numeric vector of y values

bin width

ratio of bin width to dot height

The layout method used for the dots:

* "bin" (default): places dots on the off-axis at the midpoint of their bins
as in the classic Wilkinson dotplot. This maintains the alignment of rows
and columns in the dotplot. This layout is slightly different from the classic
Wilkinson algorithm in that: (1) it nudges bins slightly to avoid overlapping
bins and (2) if the input data are symmetrical it will return a symmetrical
layout.

* "weave": uses the same basic binning approach of "bin", but places dots
in the off-axis at their actual positions (modulo overlaps, which are nudged
out of the way). This maintains the alignment of rows but does not align
dots within columns. Does not work well when side = "both".

e "swarm”: uses the "compactswarm” layout from beeswarm: :beeswarm().
Does not maintain alignment of rows or columns, but can be more compact
and neat looking, especially for sample data (as opposed to quantile dotplots
of theoretical distributions, which may look better with "bin" or "weave").

Which side to place the slab on. "topright”, "top”, and "right" are syn-
onyms which cause the slab to be drawn on the top or the right depending on
if orientation is "horizontal” or "vertical”. "bottomleft"”, "bottom"”,
and "left" are synonyms which cause the slab to be drawn on the bottom or the
left depending on if orientationis "horizontal” or "vertical”. "topleft”
causes the slab to be drawn on the top or the left, and "bottomright” causes
the slab to be drawn on the bottom or the right. "both"” draws the slab mirrored
on both sides (as in a violin plot).

Whether the dots are laid out horizontally or vertically. Follows the naming
scheme of geom_slabinterval():

* "horizontal” assumes the data values for the dotplot are in the x variable
and that dots will be stacked up in the y direction.

* "vertical” assumes the data values for the dotplot are in the y variable
and that dots will be stacked up in the x direction.

nyn

For compatibility with the base ggplot naming scheme for orientation, "x
can be used as an alias for "vertical” and "y" as an alias for "horizontal”.

A data. frame with three columns:

curve_interval 5

* x: the x position of each dot
* y: the y position of each dot

* bin: aunique number associated with each bin (supplied but not used when layout = "swarm”)

See Also

find_dotplot_binwidth() for an algorithm that finds good bin widths to use with this function;
geom_dotsinterval() for geometries that use these algorithms to create dotplots.

Examples

library(dplyr)
library(ggplot2)

X = gnorm(ppoints(20))
bin_df = bin_dots(x = x, y = @, binwidth = 0.5, heightratio = 1)
bin_df

we can manually plot the binning above, though this is only recommended
if you are using find_dotplot_binwidth() and bin_dots() to build your own
grob. For practical use it is much easier to use geom_dots(), which will
automatically select good bin widths for you (and which uses
find_dotplot_binwidth() and bin_dots() internally)
bin_df %>%

ggplot(aes(x = x, y = y)) +

geom_point(size = 4) +

coord_fixed()

curve_interval Curvewise point and interval summaries for tidy data frames of draws
from distributions

Description

Translates draws from distributions in a grouped data frame into a set of point and interval sum-
maries using a curve boxplot-inspired approach.

Usage
curve_interval(
.data,
.along = NULL,
.width = 0.5,

.interval = c("mhd", "mbd"”, "bd", "bd-mbd"),
.simple_names = TRUE,

curve_interval

na.rm = FALSE,
.exclude = c(".chain”, ".iteration"”, ".draw”, ".row")

)

Arguments

.data

.along

.width

.interval

.simple_names

na.rm

Data frame (or grouped data frame as returned by group_by()) that contains
draws to summarize.

Bare column names or expressions that, when evaluated in the context of . data,
represent draws to summarize. If this is empty, then by default all columns that
are not group columns and which are not in .exclude (by default ".chain”,
".iteration”, ".draw", and ".row") will be summarized. This can be list
columns.

Which columns are the input values to the function describing the curve (e.g., the
"x" values). Supports tidyselect syntax, as in dplyr::select(). Intervals are
calculated jointly with respect to these variables, conditional on all other group-
ing variables in the data frame. The default (NULL) causes curve_interval()
to use all grouping variables in the input data frame as the value for .along,
which will generate the most conservative intervals. However, if you want to
calculate intervals for some function y = f(x) conditional on some other vari-
able(s) (say, conditional on a factor g), you would group by g, then use .along
= x to calculate intervals jointly over x conditional on g.

vector of probabilities to use that determine the widths of the resulting intervals.
If multiple probabilities are provided, multiple rows per group are generated,
each with a different probability interval (and value of the corresponding . width
column).

The method used to calculate the intervals. Currently, all methods rank the
curves using some measure of data depth, then create envelopes containing the
.width% "deepest" curves. Available methods are:

* "mhd": mean halfspace depth (Fraiman and Muniz 2001).

* "mbd": modified band depth (Sun and Genton 2011): calls fda: : fbplot ()
with method = "MBD".

* "bd": band depth (Sun and Genton 2011): calls fda: : fbplot () withmethod
= "BD2".

e "bd-mbd"”: band depth, breaking ties with modified band depth (Sun and
Genton 2011): calls fda: : fbplot () with method = "Both".

When TRUE and only a single column / vector is to be summarized, use the name
. lower for the lower end of the interval and . upper for the upper end. If .data
is a vector and this is TRUE, this will also set the column name of the point
summary to .value. When FALSE and .data is a data frame, names the lower
and upper intervals for each column x x.lower and x.upper. When FALSE
and .data is a vector, uses the naming scheme y, ymin and ymax (for use with

ggplot).
logical value indicating whether NA values should be stripped before the compu-

tation proceeds. If FALSE (the default), the presence of NA values in the columns
to be summarized will generally result in an error. If TRUE, NA values will be

curve_interval 7

removed in the calculation of intervals so long as .interval is "mhd"”; other
methods do not currently support na.rm. Be cautious in applying this param-
eter: in general, it is unclear what a joint interval should be when any of the
values are missing!

.exclude A character vector of names of columns to be excluded from summarization
if no column names are specified to be summarized. Default ignores several
meta-data column names used in tidybayes.

Details

Intervals are calculated by ranking the curves using some measure of data depth, then using binary
search to find a cutoff k such that an envelope containing the k% "deepest" curves also contains
.width% of the curves, for each value of .width (note that k and .width are not necessarily the
same). This is in contrast to most functional boxplot or curve boxplot approaches, which tend to
simply take the .width% deepest curves, and are generally quite conservative (i.e. they may contain
more than .width% of the curves).

See Mirzargar et al. (2014) or Juul et al. (2020) for an accessible introduction to data depth and
curve boxplots / functional boxplots.

Value

A data frame containing point summaries and intervals, with at least one column corresponding
to the point summary, one to the lower end of the interval, one to the upper end of the interval,
the width of the interval (.width), the type of point summary (.point), and the type of interval
(.interval).

Author(s)
Matthew Kay

References

Fraiman, Ricardo and Graciela Muniz. (2001). "Trimmed means for functional data". Test 10:
419-440. doi: 10.1007/BF02595706.

Sun, Ying and Marc G. Genton. (2011). "Functional Boxplots". Journal of Computational and
Graphical Statistics, 20(2): 316-334. doi: 10.1198/jcgs.2011.09224

Mirzargar, Mahsa, Ross T Whitaker, and Robert M Kirby. (2014). "Curve Boxplot: Generalization
of Boxplot for Ensembles of Curves". IEEE Transactions on Visualization and Computer Graphics.
20(12): 2654-2663. doi: 10.1109/TVCG.2014.2346455

Juul Jonas, Kaare Grasbgll, Lasse Engbo Christiansen, and Sune Lehmann. (2020). "Fixed-
time descriptive statistics underestimate extremes of epidemic curve ensembles". arXiv e-print.
arXiv:2007.05035

See Also

point_interval() for pointwise intervals. See vignette(”lineribbon") for more examples and
discussion of the differences between pointwise and curvewise intervals.

https://doi.org/10.1007/BF02595706
https://doi.org/10.1198/jcgs.2011.09224
https://doi.org/10.1109/TVCG.2014.2346455
https://arxiv.org/abs/2007.05035

8 cut_cdf_qi
Examples

library(dplyr)
library(ggplot2)

generate a set of curves
k = 11 # number of curves
n = 201
df = tibble(
.draw = rep(1:k, n),
mean = rep(seq(-5,5, length.out = k), n),
x = rep(seq(-15,15,1length.out = n), each = k),
y = dnorm(x, mean, 3)

)

see pointwise intervals...

df %>%
group_by(x) %>%
median_qi(y, .width = c(.5)) %>%
ggplot(aes(x = x, y = y)) +
geom_lineribbon(aes(ymin = .lower, ymax = .upper)) +
geom_line(aes(group = .draw), alpha=0.15, data = df) +
scale_fill_brewer() +
ggtitle("50% pointwise intervals with point_interval()") +
theme_ggdist()

... compare them to curvewise intervals
if (requireNamespace("posterior”, quietly = TRUE)) {
df %>%

group_by(x) %>%

curve_interval(y, .width = c(.5)) %>%

ggplot(aes(x = x, y = y)) +

geom_lineribbon(aes(ymin = .lower, ymax = .upper)) +
geom_line(aes(group = .draw), alpha=0.15, data = df) +
scale_fill_brewer() +

ggtitle("50% curvewise intervals with curve_interval()") +
theme_ggdist()

cut_cdf_qi Categorize values from a CDF into quantile intervals

Description

Given a vector of probabilities from a cumulative distribution function (CDF) and a list of desired
quantile intervals, return a vector categorizing each element of the input vector according to which
quantile interval it falls into. Useful for drawing slabs with intervals overlaid on the density, e.g.
using stat_halfeye() or stat_dist_halfeye()

cut_cdf_qi

Usage
cut_cdf_qi(p,

Arguments

p

.width
labels

Value

.width = c(0.66, ©0.95, 1), labels = NULL)

A numeric vector of values from a cumulative distribution function, such as val-

ues returned by p-prefixed distribution functions in base R (e.g. pnorm()), the

cdf () function, or values of the cdf computed aesthetic from the stat_sample_slabinterval()
or stat_dist_slabinterval() stats.

vector of probabilities to use that determine the widths of the resulting intervals.
One of:
¢ NULL to use the default labels (.width converted to a character vector).

* A character vector giving labels (must be same length as .width)

* A function that takes numeric probabilities as input and returns labels as
output (a good candidate might be scales: :percent_format()).

An ordered factor of the same length as p giving the quantile interval to which each value of p

belongs.

See Also

See stat_sample_slabinterval() orstat_dist_slabinterval() and their shortcut stats, which
generate cdf aesthetics that can be used with cut_cdf_qi () to draw slabs colored by their intervals.

Examples

library(ggplot2)

library(dplyr)

library(scales)

library(distributional)

theme_set (theme_ggdist())

with a slab

tibble(x = dist_normal(@, 1)) %>%

ggplot(aes(dist

=x,y="a")) +

stat_dist_slab(aes(
fill = stat(cut_cdf_qgi(cdf))

)+

scale_fill_brewer(direction = -1, na.value = "gray90")

With a halfeye (or other geom with slab and interval), NA values will
show up in the fill scale from the CDF function applied to the internal
interval geometry data and can be ignored, hence na.translate = FALSE
tibble(x = dist_normal(@, 1)) %>%

ggplot(aes(dist

=x, y =) ¢

10 find_dotplot_binwidth

stat_dist_halfeye(aes(
fill = stat(cut_cdf_qgi(cdf, .width = c(.5, .8, .95, 1)))
)+

scale_fill_brewer(direction = -1, na.translate = FALSE)

we could also use the labels parameter to apply nicer formatting
and provide a better name for the legend, and omit the 100% interval
if desired
tibble(x = dist_normal(@, 1)) %>%
ggplot(aes(dist = x, y = "a")) +
stat_dist_halfeye(aes(
fill = stat(cut_cdf_qgi(cdf, .width =c(.5, .8, .95), labels = percent_format(accuracy = 1)))

)+
labs(fill = "Interval”) +
scale_fill_brewer(direction = -1, na.translate = FALSE)

find_dotplot_binwidth Dynamically select a good bin width for a dotplot

Description
Searches for a nice-looking bin width to use to draw a dotplot such that the height of the dotplot fits
within a given space (maxheight).

Usage
find_dotplot_binwidth(x, maxheight, heightratio = 1)

Arguments
X numeric vector of values
maxheight maximum height of the dotplot

heightratio ratio of bin width to dot height

Details

This dynamic bin selection algorithm uses a binary search over the number of bins to find a bin
width such that if the input data (x) is binned using a Wilkinson-style dotplot algorithm the height
of the tallest bin will be less than maxheight.

This algorithm is used by geom_dotsinterval() (and its variants) to automatically select bin
widths. Unless you are manually implementing you own dotplot grob or geom, you probably do not
need to use this function directly

Value

A suitable bin width such that a dotplot created with this bin width and heightratio should have
its tallest bin be less than or equal to maxheight.

geom_dotsinterval 11

See Also

bin_dots() for an algorithm can bin dots using bin widths selected by this function; geom_dotsinterval()
for geometries that use these algorithms to create dotplots.

Examples

library(dplyr)
library(ggplot2)

X = gnorm(ppoints(20))
binwidth = find_dotplot_binwidth(x, maxheight = 4, heightratio = 1)
binwidth

bin_df = bin_dots(x = x, y = @, binwidth = binwidth, heightratio = 1)
bin_df

we can manually plot the binning above, though this is only recommended

if you are using find_dotplot_binwidth() and bin_dots() to build your own

grob. For practical use it is much easier to use geom_dots(), which will

automatically select good bin widths for you (and which uses

find_dotplot_binwidth() and bin_dots() internally)

bin_df %>%
ggplot(aes(x = x, y =y)) +
geom_point(size = 4

) +
coord_fixed()
geom_dotsinterval Automatic dotplots, dots + intervals, and quantile dotplots (ggplot
geom)

Description

Geoms and stats for creating dotplots that automatically determines a bin width that ensures the plot

fits within the available space. Also ensures dots do not overlap, and allows generation of quantile

dotplots using the quantiles argument to stat_dotsinterval/stat_dotsand stat_dist_dotsinterval/stat_dist_dot
Generally follows the naming scheme and arguments of the geom_slabinterval() and stat_slabinterval()

family of geoms and stats.

Usage

geom_dotsinterval(
mapping = NULL,
data = NULL,
stat = "identity"”,
position = "identity"”,

L

geom_dotsinterval

dotsize =1,

stackratio = 1,

binwidth = NA,

layout = c("bin”, "weave"”, "swarm"),
na.rm = FALSE,

show.legend = NA,

inherit.aes = TRUE

geom_dots(
mapping = NULL,
data = NULL,
stat = "identity”,
position = "identity"”,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

stat_dotsinterval(
mapping = NULL,

data = NULL,
geom = "dotsinterval”,
position = "identity",

quantiles = NA,

point_interval = median_qi,
na.rm = FALSE,

show.legend = c(size = FALSE),
inherit.aes = TRUE

stat_dots(
mapping = NULL,
data = NULL,
geom = "dots"”,
position = "identity",
show.legend = NA,
inherit.aes = TRUE

stat_dist_dotsinterval(
mapping = NULL,
data = NULL,
geom = "dotsinterval”,
position = "identity"”,

geom_dotsinterval 13

quantiles = 100,

na.rm = FALSE,

show.legend = c(size = FALSE),
inherit.aes = TRUE

)

stat_dist_dots(
mapping = NULL,

data = NULL,
geom = "dots"”,
position = "identity",
show.legend = NA,
inherit.aes = TRUE
)
Arguments
mapping Set of aesthetic mappings created by aes () or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.
data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).
stat The statistical transformation to use on the data for this layer, as a string.
position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.
Arguments passed on to geom_slabinterval

orientation Whether this geom is drawn horizontally ("horizontal") or ver-
tically ("vertical"). The default, NA, automatically detects the orientation
based on how the aesthetics are assigned, and should generally do an okay
job at this. When horizontal (resp. vertical), the geom uses the y (resp. x)
aesthetic to identify different groups, then for each group uses the x (resp.
y) aesthetic and the thickness aesthetic to draw a function as an slab, and
draws points and intervals horizontally (resp. vertically) using the xmin, x,
and xmax (resp. ymin, y, and ymax) aesthetics. For compatibility with the
base ggplot naming scheme for orientation, "x" can be used as an alias
for "vertical” and "y" as an alias for "horizontal” (tidybayes had an
orientation parameter before ggplot did, and I think the tidybayes nam-
ing scheme is more intuitive: "x" and "y" are not orientations and their

14

dotsize

geom_dotsinterval

mapping to orientations is, in my opinion, backwards; but the base ggplot
naming scheme is allowed for compatibility).

normalize How to normalize heights of functions input to the thickness aes-
thetic. If "all” (the default), normalize so that the maximum height across
all data is 1; if "panels”, normalize within panels so that the maximum
height in each panel is 1; if "xy", normalize within the x/y axis opposite
the orientation of this geom so that the maximum height at each value of
the opposite axis is 1; if "groups”, normalize within values of the opposite
axis and within groups so that the maximum height in each group is 1; if
"none”, values are taken as is with no normalization (this should probably
only be used with functions whose values are in [0,1], such as CDFs).

fill_type What type of fill to use when the fill color or alpha varies within
a slab. The default, "segments”, breaks up the slab geometry into seg-
ments for each unique combination of fill color and alpha value. This ap-
proach is supported by all graphics devices and works well for sharp cutoff
values, but can result in ugly results if a large number of unique fill col-
ors are being used (as in gradients, like in stat_gradientinterval()).
When fill_type == "gradient”, a linearGradient() is used to create
a smooth gradient fill. This works well for large numbers of unique fill
colors, but requires R > 4.1 and is not yet supported on all graphics devices.

interval_size_domain The minimum and maximum of the values of the size
aesthetic that will be translated into actual sizes for intervals drawn accord-
ing to interval_size_range (see the documentation for that argument.)

interval_size_range (Deprecated). This geom scales the raw size aesthetic
values when drawing interval and point sizes, as they tend to be too thick
when using the default settings of scale_size_continuous(), which give
sizes with a range of c(1,6). The interval_size_domain value indicates
the input domain of raw size values (typically this should be equal to the
value of the range argument of the scale_size_continuous() function),
and interval_size_range indicates the desired output range of the size
values (the min and max of the actual sizes used to draw intervals). Most
of the time it is not recommended to change the value of this argument,
as it may result in strange scaling of legends; this argument is a holdover
from earlier versions that did not have size aesthetics targeting the point
and interval separately. If you want to adjust the size of the interval or
points separately, you can instead use the interval_size or point_size
aesthetics; see scales.

fatten_point A multiplicative factor used to adjust the size of the point rela-
tive to the size of the thickest interval line. If you wish to specify point sizes
directly, you can also use the point_size aesthetic and scale_point_size_continuous()
or scale_point_size_discrete(); sizes specified with that aesthetic will
not be adjusted using fatten_point.

show_slab Should the slab portion of the geom be drawn? Default TRUE.

show_point Should the point portion of the geom be drawn? Default TRUE.

show_interval Should the interval portion of the geom be drawn? Default
TRUE.

The size of the dots relative to the bin width. The default, 1, makes dots be just
about as wide as the bin width.

geom_dotsinterval 15

stackratio The distance between the center of the dots in the same stack relative to the bin
height. The default, 1, makes dots in the same stack just touch each other.

binwidth The bin width to use for drawing the dotplots. One of:

* NA (the default): Dynamically select the bin width based on the size of the
plot when drawn.

* A length-1 (scalar) numeric or unit object giving the exact bin width.

* A length-2 (vector) numeric or unit object giving the minimum and maxi-
mum desired bin width. The bin width will be dynamically selected within
these bounds.

If the value is numeric, it is assumed to be in units of data. The bin width
(or its bounds) can also be specified using unit(), which may be useful if it
is desired that the dots be a certain point size or a certain percentage of the
width/height of the viewport. For example, unit (0.1, "npc") would make dots
that are exactly 10% of the viewport size along whichever dimension the dotplot
is drawn; unit(c(0,0.1), "npc”) would make dots that are at most 10% of the
viewport size.

layout The layout method used for the dots:

* "bin” (default): places dots on the off-axis at the midpoint of their bins
as in the classic Wilkinson dotplot. This maintains the alignment of rows
and columns in the dotplot. This layout is slightly different from the classic
Wilkinson algorithm in that: (1) it nudges bins slightly to avoid overlapping
bins and (2) if the input data are symmetrical it will return a symmetrical
layout.

* "weave": uses the same basic binning approach of "bin", but places dots
in the off-axis at their actual positions (modulo overlaps, which are nudged
out of the way). This maintains the alignment of rows but does not align
dots within columns. Does not work well when side = "both”.

* "swarm”: uses the "compactswarm” layout from beeswarm: :beeswarm().
Does not maintain alignment of rows or columns, but can be more compact
and neat looking, especially for sample data (as opposed to quantile dotplots
of theoretical distributions, which may look better with "bin" or "weave").

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom Use to override the default connection between stat_slabinterval and geom_slabinterval()

quantiles For the stat_ and stat_dist_ stats, setting this to a value other than NA will
produce a quantile dotplot: that is, a dotplot of quantiles from the sample (for
stat_) or a dotplot of quantiles from the distribution (for stat_dist_). The
value of quantiles determines the number of quantiles to plot. See Kay et al.
(2016) and Fernandes et al. (2018) for more information on quantile dotplots.

16 geom_dotsinterval

point_interval A function from the point_interval() family (e.g., median_qi, mean_qi,
etc). This function should take in a vector of value, and should obey the .width
and . simple_names parameters of point_interval () functions, such that when
given a vector with . simple_names = TRUE should return a data frame with vari-
ables .value, .lower, .upper, and .width. Output will be converted to the
appropriate x- or y-based aesthetics depending on the value of orientation.
See the point_interval() family of functions for more information.

Details

The dots geoms are similar to geom_dotplot () but with a number of differences:

* Dots geoms act like slabs in geom_slabinterval() and can be given x positions (or y posi-
tions when in a horizontal orientation).

* Given the available space to lay out dots, the dots geoms will automatically determine how
many bins to use to fit the available space.

* Dots geoms use a dynamic layout algorithm that lays out dots from the center out if the input
data are symmetrical, guaranteeing that symmetrical data results in a symmetrical plot. The
layout algorithm also prevents dots from overlapping each other.

» The shape of the dots in a in these geoms can be changed using the slab_shape aesthetic
(when using the dotsinterval family) or the shape or slab_shape aesthetic (when using
the dots family)

The stat_... and stat_dist_... versions of the stats when used with the quantiles argument
are particularly useful for constructing quantile dotplots, which can be an effective way to commu-
nicate uncertainty using a frequency framing that may be easier for laypeople to understand (Kay
et al. 2016, Fernandes et al. 2018).

Value

A ggplot2::Geom or ggplot2::Stat representing a dotplot or combined dotplot+interval geometry
which can be added to a ggplot() object.

Aesthetics
The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
These stats support the following aesthetics:
* x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-

rized (when orientation = "horizontal”) except for stat_dist_ geometries (which use
only one of x or y at a time along with the dist aesthetic).

* y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical”) except for stat_dist_ geometries (which use
only one of x or y at a time along with the dist aesthetic).

In addition, in their default configuration (paired with geom_dotsinterval()) the following aes-
thetics are supported by the underlying geom:

Slab-specific aesthetics

geom_dotsinterval 17

¢ thickness: The thickness of the slab at each x value (if orientation = "horizontal”) ory
value (if orientation = "vertical”) of the slab.

* side: Which side to place the slab on. "topright”, "top”, and "right” are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal” or "vertical”. "bottomleft”, "bottom”, and "left"” are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal” or "vertical”. "topleft” causes the slab to be drawn on the top or the
left, and "bottomright” causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

* scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
=1, slabs that use the maximum range will just touch each other. Default is @. 9 to leave some
space.

e justification: Justification of the interval relative to the slab, where @ indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to @, when side is "bottom"/"left"” justification
is set to 1, and when side is "both” justification is set to 0.5.

datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval”
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

* xmin: Left end of the interval sub-geometry (if orientation = "horizontal”).
» xmax: Right end of the interval sub-geometry (if orientation = "horizontal").
* ymin: Lower end of the interval sub-geometry (if orientation = "vertical”).

» ymax: Upper end of the interval sub-geometry (if orientation = "vertical”).
Point-specific aesthetics

* shape: Shape type used to draw the point sub-geometry.
Color aesthetics

* colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,

interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

» fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

* alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

* colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

e fill_ramp: (or fill_ramp) A secondary scale that modifies the fill scale to "ramp" to
another color. See scale_fill_ramp() for examples.

Line aesthetics

18

geom_dotsinterval

size: Width of the outline around the slab (if visible). Also determines the width of the line
used to draw the interval and the size of the point, but raw size values are transformed ac-
cording to the interval_size_domain, interval_size_range, and fatten_point param-
eters of the geom (see above). Use the slab_size, interval_size, or point_size aesthetics
(below) to set sub-geometry line widths separately (note that when size is set directly using
the override aesthetics, interval and point sizes are not affected by interval_size_domain,
interval_size_range, and fatten_point).

stroke: Width of the outline around the point sub-geometry.

linetype: Type of line (e.g., "solid"”, "dashed”, etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color/line override aesthetics

slab_fill: Override for fill: the fill color of the slab.

slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.
slab_alpha: Override for alpha: the opacity of the slab.

slab_size: Override for size: the width of the outline of the slab.

slab_linetype: Override for linetype: the line type of the outline of the slab.
slab_shape: Override for shape: the shape of the dots used to draw the dotplot slab.

Interval-specific color/line override aesthetics

interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

interval_alpha: Override for alpha: the opacity of the interval.
interval_size: Override for size: the line width of the interval.

interval_linetype: Override for linetype: the line type of the interval.

Point-specific color/line override aesthetics

point_fill: Override for fill: the fill color of the point.
point_colour: (or point_color) Override for colour/color: the outline color of the point.
point_alpha: Override for alpha: the opacity of the point.

point_size: Override for size: the size of the point.

Other aesthetics (these work as in standard geoms)

width
height

group

See examples of some of these aesthetics in action in vignette(”slabinterval”). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs”).

geom_dotsinterval 19

Author(s)
Matthew Kay

References

Kay, M., Kola, T., Hullman, J. R., & Munson, S. A. (2016). When (ish) is My Bus? User-centered
Visualizations of Uncertainty in Everyday, Mobile Predictive Systems. Conference on Human Fac-
tors in Computing Systems - CHI *16, 5092-5103. doi: 10.1145/2858036.2858558.

Fernandes, M., Walls, L., Munson, S., Hullman, J., & Kay, M. (2018). Uncertainty Displays Using
Quantile Dotplots or CDFs Improve Transit Decision-Making. Conference on Human Factors in
Computing Systems - CHI ’18. doi: 10.1145/3173574.3173718.

See Also

See stat_sample_slabinterval() and stat_dist_slabinterval() for families of other stats
built on top of geom_slabinterval(). See vignette(”"slabinterval”) for a variety of examples
of use.

Examples

library(dplyr)
library(ggplot2)

data(RankCorr_u_tau, package = "ggdist")

orientation is detected automatically based on
which axis is discrete

RankCorr_u_tau %>%
ggplot(aes(x = u_tau)) +
geom_dots()

RankCorr_u_tau %>%
ggplot(aes(y = u_tau)) +
geom_dots()

stat_dots can summarize quantiles, creating quantile dotplots

RankCorr_u_tau %>%
ggplot(aes(x = u_tau, y = factor(i))) +
stat_dots(quantiles = 100)

color and fill aesthetics can be mapped within the geom
dotsinterval adds an interval

RankCorr_u_tau %>%
ggplot(aes(x = u_tau, y = factor(i), fill = stat(x > 6))) +
stat_dotsinterval(quantiles = 100)

https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1145/3173574.3173718

20 geom_interval

geom_interval Multiple uncertainty interval plots (ggplot geom)

Description
Multiple interval geoms with default aesthetics designed for use with output from point_interval().
Wrapper around geom_slabinterval().

Usage

geom_interval(
mapping = NULL,

data = NULL,
stat = "identity"”,
position = "identity",

orientation = NA,
interval_size_range = c(1, 6),
show_slab = FALSE,

show_point = FALSE

Arguments

mapping Set of aesthetic mappings created by aes () or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data. frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x,10)).

stat The statistical transformation to use on the data for this layer, as a string.

position The position adjustment to use for overlapping points on this layer. Setting this
equal to "dodge” can be useful if you have overlapping intervals.

Arguments passed on to geom_slabinterval

normalize How to normalize heights of functions input to the thickness aes-
thetic. If "all” (the default), normalize so that the maximum height across
all data is 1; if "panels”, normalize within panels so that the maximum
height in each panel is 1; if "xy", normalize within the x/y axis opposite
the orientation of this geom so that the maximum height at each value of

geom_interval 21

the opposite axis is 1; if "groups”, normalize within values of the opposite
axis and within groups so that the maximum height in each group is 1; if
"none”, values are taken as is with no normalization (this should probably
only be used with functions whose values are in [0,1], such as CDFs).

fill_type What type of fill to use when the fill color or alpha varies within
a slab. The default, "segments”, breaks up the slab geometry into seg-
ments for each unique combination of fill color and alpha value. This ap-
proach is supported by all graphics devices and works well for sharp cutoff
values, but can result in ugly results if a large number of unique fill col-
ors are being used (as in gradients, like in stat_gradientinterval()).
When fill_type == "gradient”, a linearGradient() is used to create
a smooth gradient fill. This works well for large numbers of unique fill
colors, but requires R > 4.1 and is not yet supported on all graphics devices.

interval_size_domain The minimum and maximum of the values of the size
aesthetic that will be translated into actual sizes for intervals drawn accord-
ing to interval_size_range (see the documentation for that argument.)

fatten_point A multiplicative factor used to adjust the size of the point rela-
tive to the size of the thickest interval line. If you wish to specify point sizes
directly, you can also use the point_size aesthetic and scale_point_size_continuous()
or scale_point_size_discrete(); sizes specified with that aesthetic will
not be adjusted using fatten_point.

show_interval Should the interval portion of the geom be drawn? Default
TRUE.

na.rm If FALSE, the default, missing values are removed with a warning. If
TRUE, missing values are silently removed.

show. legend logical. Should this layer be included in the legends? NA, the
default, includes if any aesthetics are mapped. FALSE never includes, and
TRUE always includes. It can also be a named logical vector to finely select
the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining
with them. This is most useful for helper functions that define both data
and aesthetics and shouldn’t inherit behaviour from the default plot specifi-
cation, e.g. borders().

orientation Whether this geom is drawn horizontally ("horizontal”) or vertically ("vertical”).
The default, NA, automatically detects the orientation based on how the aesthetics
are assigned, and should generally do an okay job at this. When horizontal (resp.
vertical), the geom uses the y (resp. x) aesthetic to identify different groups,
then for each group uses the x (resp. y) aesthetic and the thickness aesthetic
to draw a function as an slab, and draws points and intervals horizontally (resp.
vertically) using the xmin, x, and xmax (resp. ymin, y, and ymax) aesthetics.
For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical” and "y" as an alias for "horizontal”
(tidybayes had an orientation parameter before ggplot did, and I think the
tidybayes naming scheme is more intuitive: "x" and "y" are not orientations
and their mapping to orientations is, in my opinion, backwards; but the base
ggplot naming scheme is allowed for compatibility).

interval_size_range

(Deprecated). This geom scales the raw size aesthetic values when drawing

22 geom_interval

interval and point sizes, as they tend to be too thick when using the default set-
tings of scale_size_continuous(), which give sizes with a range of c(1,6).
The interval_size_domain value indicates the input domain of raw size val-
ues (typically this should be equal to the value of the range argument of the
scale_size_continuous() function), and interval_size_range indicates the
desired output range of the size values (the min and max of the actual sizes used
to draw intervals). Most of the time it is not recommended to change the value
of this argument, as it may result in strange scaling of legends; this argument
is a holdover from earlier versions that did not have size aesthetics targeting
the point and interval separately. If you want to adjust the size of the interval
or points separately, you can instead use the interval_size or point_size
aesthetics; see scales.

show_slab Should the slab portion of the geom be drawn? Default TRUE.
show_point Should the point portion of the geom be drawn? Default TRUE.
Details

These geoms are wrappers around geom_slabinterval() with defaults designed to produce multi-
ple interval plots. These geoms set some default aesthetics equal to the . lower, . upper, and .width
columns generated by the point_interval family of functions, making them often more conve-
nient than vanilla geom_linerange() when used with functions like median_qgi (), mean_qi(),
mode_hdi (), etc.

Specifically, geom_interval acts as if its default aesthetics are aes(color = forcats: : fct_rev(ordered(.width))).

Value

A ggplot2::Geom representing a multiple interval geometry which can be added to a ggplot()
object.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.

Positional aesthetics

* x: X position of the geometry

* y: y position of the geometry
Slab-specific aesthetics

¢ thickness: The thickness of the slab at each x value (if orientation = "horizontal”) ory
value (if orientation = "vertical”) of the slab.

e side: Which side to place the slab on. "topright"”, "top”, and "right” are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal” or "vertical”. "bottomleft”, "bottom”, and "left” are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal” or "vertical”. "topleft"” causes the slab to be drawn on the top or the
left, and "bottomright” causes the slab to be drawn on the bottom or the right. "both"” draws
the slab mirrored on both sides (as in a violin plot).

geom_interval 23

scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
=1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space.

justification: Justification of the interval relative to the slab, where @ indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right"” justification is set to @, when side is "bottom”/"left"” justification

is set to 1, and when side is "both” justificationis set to 0.5.

datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval”
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

xmin: Left end of the interval sub-geometry (if orientation = "horizontal”).
xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

ymin: Lower end of the interval sub-geometry (if orientation = "vertical”).

» ymax: Upper end of the interval sub-geometry (if orientation = "vertical”).

Point-specific aesthetics

* shape: Shape type used to draw the point sub-geometry.

Color aesthetics

colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

fill_ramp: (or fill_ramp) A secondary scale that modifies the fill scale to "ramp" to
another color. See scale_fill_ramp() for examples.

Line aesthetics

e size: Width of the outline around the slab (if visible). Also determines the width of the line

used to draw the interval and the size of the point, but raw size values are transformed ac-
cording to the interval_size_domain, interval_size_range, and fatten_point param-
eters of the geom (see above). Use the slab_size, interval_size, or point_size aesthetics
(below) to set sub-geometry line widths separately (note that when size is set directly using
the override aesthetics, interval and point sizes are not affected by interval_size_domain,
interval_size_range, and fatten_point).

* stroke: Width of the outline around the point sub-geometry.

24 geom_interval

e linetype: Type of line (e.g., "solid", "dashed”, etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color/line override aesthetics

e slab_fill: Override for fill: the fill color of the slab.

e slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

* slab_alpha: Override for alpha: the opacity of the slab.

* slab_size: Override for size: the width of the outline of the slab.

e slab_linetype: Override for linetype: the line type of the outline of the slab.
Interval-specific color/line override aesthetics

e interval_colour: (or interval_color) Override for colour/color: the color of the inter-

val.
* interval_alpha: Override for alpha: the opacity of the interval.
e interval_size: Override for size: the line width of the interval.

e interval_linetype: Override for linetype: the line type of the interval.
Point-specific color/line override aesthetics

* point_fill: Override for fill: the fill color of the point.
* point_colour: (or point_color) Override for colour/color: the outline color of the point.
* point_alpha: Override for alpha: the opacity of the point.

* point_size: Override for size: the size of the point.
Other aesthetics (these work as in standard geoms)

* width

* height

e group

See examples of some of these aesthetics in action in vignette(”slabinterval”). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs”).

Author(s)
Matthew Kay

See Also

See stat_interval() for the stat version, intended for use on samples from a distribution. See

geom_interval () for a similar geom intended for intervals without point summaries. See stat_sample_slabinterval()
for a variety of other stats that combine intervals with densities and CDFs. See geom_slabinterval()

for the geom that these geoms wrap. All parameters of that geom are available to these geoms.

geom_lineribbon

Examples

library(dplyr)
library(ggplot2)

theme_set (theme_ggdist())

data(RankCorr_u_tau, package = "ggdist")

orientation is detected automatically based on

use of xmin/xmax or ymin/ymax

RankCorr_u_tau %>%
group_by (i) %>%
median_qi(.width = c(.5, .8,
ggplot(aes(y = i, x = u_tau,
geom_interval() +
scale_color_brewer()

RankCorr_u_tau %>%
group_by (i) %>%
median_qgi(.width = c(.5, .8,
ggplot(aes(x = i, y = u_tau,
geom_interval() +
scale_color_brewer()

.99)) %%

.lower, xmax

.99)) %%

.lower, ymax

25

.upper)) +

.upper)) +

geom_lineribbon

Line + multiple uncertainty ribbon plots (ggplot geom)

Description

A combination of geom_line() and geom_ribbon() with default aesthetics designed for use with

output from point_interval().

Usage

geom_lineribbon(
mapping = NULL,

data = NULL,

stat = "identity"”,
position = "identity",
step = FALSE,

orientation = NA,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

26

Arguments

mapping

data

stat

position

step

orientation

na.rm

show. legend

inherit.aes

geom_lineribbon

Set of aesthetic mappings created by aes () or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

The statistical transformation to use on the data for this layer, as a string.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

Other arguments passed to layer().

Should the line/ribbon be drawn as a step function? One of: FALSE (do not draw
as a step function, the default), TRUE (draw a step function using the "mid" ap-
proach), "mid"” (draw steps midway between adjacent x values), "hv" (draw
horizontal-then-vertical steps), "vh" (draw as vertical-then-horizontal steps).
TRUE is an alias for "mid"” because for a step function with ribbons, "mid" is
probably what you want (for the other two step approaches the ribbons at either
the vert first or vert last x value will not be visible).

Whether this geom is drawn horizontally ("horizontal") or vertically ("vertical”).
The default, NA, automatically detects the orientation based on how the aesthetics
are assigned, and should generally do an okay job at this. When horizontal (resp.
vertical), the geom uses the y (resp. x) aesthetic to identify different groups,
then for each group uses the x (resp. y) aesthetic and the thickness aesthetic
to draw a function as an slab, and draws points and intervals horizontally (resp.
vertically) using the xmin, x, and xmax (resp. ymin, y, and ymax) aesthetics.
For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical” and "y" as an alias for "horizontal”
(tidybayes had an orientation parameter before ggplot did, and I think the
tidybayes naming scheme is more intuitive: "x" and "y" are not orientations
and their mapping to orientations is, in my opinion, backwards; but the base

ggplot naming scheme is allowed for compatibility).

If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom_pointinterval 27

Details

geom_lineribbon is a combination version of a geom_line(), and geom_ribbon designed for use
with output from point_interval(). This geom sets some default aesthetics equal to the .width
column generated by the point_interval family of functions, making them often more convenient
than a vanilla geom_ribbon() + geom_line().

Specifically, geom_lineribbon acts as if its default aesthetics are aes (fill = forcats: :fct_rev(ordered(.width))).

Value

A ggplot2::Geom representing a combined line+uncertainty ribbon geometry which can be added
to a ggplot() object.

Author(s)

Matthew Kay

See Also

See stat_lineribbon() for a version that does summarizing of samples into points and intervals
within ggplot. See geom_pointinterval() for a similar geom intended for point summaries and
intervals. See geom_ribbon() and geom_line() for the geoms this is based on.

Examples

library(dplyr)
library(ggplot2)

theme_set (theme_ggdist())

tibble(x = 1:10) %>%
group_by_all() %>%
do(tibble(y = rnorm(100, .$x))) %>%
median_qi(.width = c(.5, .8, .95)) %>%
ggplot(aes(x = x, y =y, ymin = .lower, ymax = .upper)) +
automatically uses aes(fill = forcats::fct_rev(ordered(.width)))
geom_lineribbon() +
scale_fill_brewer()

geom_pointinterval Point + multiple uncertainty interval plots (ggplot geom)

Description

Combined point + multiple interval geoms with default aesthetics designed for use with output from
point_interval(). Wrapper around geom_slabinterval().

28 geom_pointinterval

Usage

geom_pointinterval(
mapping = NULL,

data = NULL,
stat = "identity"”,
position = "identity"”,

orientation = NA,
show_slab = FALSE,
show.legend = c(size = FALSE)

Arguments

mapping Set of aesthetic mappings created by aes () or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x,10)).

stat The statistical transformation to use on the data for this layer, as a string.

position The position adjustment to use for overlapping points on this layer. Setting this
equal to "dodge" can be useful if you have overlapping intervals.

Arguments passed on to geom_slabinterval

normalize How to normalize heights of functions input to the thickness aes-
thetic. If "all” (the default), normalize so that the maximum height across
all data is 1; if "panels”, normalize within panels so that the maximum
height in each panel is 1; if "xy"”, normalize within the x/y axis opposite
the orientation of this geom so that the maximum height at each value of
the opposite axis is 1; if "groups”, normalize within values of the opposite
axis and within groups so that the maximum height in each group is 1; if
"none”, values are taken as is with no normalization (this should probably
only be used with functions whose values are in [0,1], such as CDFs).

fill_type What type of fill to use when the fill color or alpha varies within
a slab. The default, "segments”, breaks up the slab geometry into seg-
ments for each unique combination of fill color and alpha value. This ap-
proach is supported by all graphics devices and works well for sharp cutoff
values, but can result in ugly results if a large number of unique fill col-
ors are being used (as in gradients, like in stat_gradientinterval()).
When fill_type == "gradient”, a linearGradient() is used to create

geom_pointinterval 29

a smooth gradient fill. This works well for large numbers of unique fill
colors, but requires R > 4.1 and is not yet supported on all graphics devices.

interval_size_domain The minimum and maximum of the values of the size
aesthetic that will be translated into actual sizes for intervals drawn accord-
ing to interval_size_range (see the documentation for that argument.)

interval_size_range (Deprecated). This geom scales the raw size aesthetic
values when drawing interval and point sizes, as they tend to be too thick
when using the default settings of scale_size_continuous(), which give
sizes with a range of c(1,6). The interval_size_domain value indicates
the input domain of raw size values (typically this should be equal to the
value of the range argument of the scale_size_continuous() function),
and interval_size_range indicates the desired output range of the size
values (the min and max of the actual sizes used to draw intervals). Most
of the time it is not recommended to change the value of this argument,
as it may result in strange scaling of legends; this argument is a holdover
from earlier versions that did not have size aesthetics targeting the point
and interval separately. If you want to adjust the size of the interval or
points separately, you can instead use the interval_size or point_size
aesthetics; see scales.

fatten_point A multiplicative factor used to adjust the size of the point rela-
tive to the size of the thickest interval line. If you wish to specify point sizes
directly, you can also use the point_size aesthetic and scale_point_size_continuous()
or scale_point_size_discrete(); sizes specified with that aesthetic will
not be adjusted using fatten_point.

show_point Should the point portion of the geom be drawn? Default TRUE.

show_interval Should the interval portion of the geom be drawn? Default
TRUE.

na.rm If FALSE, the default, missing values are removed with a warning. If
TRUE, missing values are silently removed.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining
with them. This is most useful for helper functions that define both data
and aesthetics and shouldn’t inherit behaviour from the default plot specifi-
cation, e.g. borders().

orientation Whether this geom is drawn horizontally ("horizontal”) or vertically ("vertical”).
The default, NA, automatically detects the orientation based on how the aesthetics
are assigned, and should generally do an okay job at this. When horizontal (resp.
vertical), the geom uses the y (resp. x) aesthetic to identify different groups,
then for each group uses the x (resp. y) aesthetic and the thickness aesthetic
to draw a function as an slab, and draws points and intervals horizontally (resp.
vertically) using the xmin, x, and xmax (resp. ymin, y, and ymax) aesthetics.
For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical” and "y" as an alias for "horizontal”
(tidybayes had an orientation parameter before ggplot did, and I think the
tidybayes naming scheme is more intuitive: "x" and "y" are not orientations
and their mapping to orientations is, in my opinion, backwards; but the base

ggplot naming scheme is allowed for compatibility).

show_slab Should the slab portion of the geom be drawn? Default TRUE.

30 geom_pointinterval

show. legend Should this layer be included in the legends? Defaultis c(size = FALSE), unlike
most geoms, to match its common use cases. FALSE hides all legends, TRUE
shows all legends, and NA shows only those that are mapped (the default for
most geoms).

Details

These geoms are wrappers around geom_slabinterval () with defaults designed to produce points+interval
plots. These geoms set some default aesthetics equal to the . lower, .upper, and .width columns
generated by the point_interval family of functions, making them often more convenient than

vanilla geom_pointrange () when used with functions like median_qi (), mean_qi (), mode_hdi (),

etc.

Specifically, geom_pointinterval acts as if its default aesthetics are aes(size = -.width).

Value

A ggplot2::Geom representing a point+multiple uncertainty interval geometry which can be added
to a ggplot() object.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.

Positional aesthetics

* x: X position of the geometry

* y: y position of the geometry
Slab-specific aesthetics

* thickness: The thickness of the slab at each x value (if orientation = "horizontal”) ory
value (if orientation = "vertical") of the slab.

* side: Which side to place the slab on. "topright”, "top”, and "right” are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal” or "vertical”. "bottomleft”, "bottom”, and "left"” are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal” or "vertical”. "topleft” causes the slab to be drawn on the top or the
left, and "bottomright” causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

* scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
=1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space.

e justification: Justification of the interval relative to the slab, where @ indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to @, when side is "bottom"/"left"” justification
is set to 1, and when side is "both” justification is set to 0.5.

geom_pointinterval 31

datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with

datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval”

target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

xmin: Left end of the interval sub-geometry (if orientation = "horizontal”).
xmax: Right end of the interval sub-geometry (if orientation = "horizontal”).
ymin: Lower end of the interval sub-geometry (if orientation = "vertical”).

ymax: Upper end of the interval sub-geometry (if orientation = "vertical”).

Point-specific aesthetics

shape: Shape type used to draw the point sub-geometry.

Color aesthetics

colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

fill_ramp: (or fill_ramp) A secondary scale that modifies the fill scale to "ramp" to
another color. See scale_fill_ramp() for examples.

Line aesthetics

size: Width of the outline around the slab (if visible). Also determines the width of the line
used to draw the interval and the size of the point, but raw size values are transformed ac-
cording to the interval_size_domain, interval_size_range, and fatten_point param-
eters of the geom (see above). Use the slab_size, interval_size, or point_size aesthetics
(below) to set sub-geometry line widths separately (note that when size is set directly using
the override aesthetics, interval and point sizes are not affected by interval_size_domain,
interval_size_range, and fatten_point).

stroke: Width of the outline around the point sub-geometry.

linetype: Type of line (e.g., "solid", "dashed”, etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color/line override aesthetics

slab_fill: Override for fill: the fill color of the slab.
slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

slab_alpha: Override for alpha: the opacity of the slab.

32 geom_pointinterval

* slab_size: Override for size: the width of the outline of the slab.
e slab_linetype: Override for linetype: the line type of the outline of the slab.
Interval-specific color/line override aesthetics
e interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.
e interval_alpha: Override for alpha: the opacity of the interval.
e interval_size: Override for size: the line width of the interval.

e interval_linetype: Override for linetype: the line type of the interval.
Point-specific color/line override aesthetics

e point_fill: Override for fill: the fill color of the point.
* point_colour: (or point_color) Override for colour/color: the outline color of the point.
* point_alpha: Override for alpha: the opacity of the point.

* point_size: Override for size: the size of the point.
Other aesthetics (these work as in standard geoms)

e width
* height
e group
See examples of some of these aesthetics in action in vignette(”slabinterval”). Learn more

about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs”).

Author(s)

Matthew Kay

See Also

See geom_slabinterval() for the geom that these geoms wrap. All parameters of that geom are
available to these geoms.

See stat_pointinterval() for the stat version, intended for use on samples from a distribu-
tion. See geom_interval() for a similar stat intended for intervals without point summaries. See
stat_sample_slabinterval() for a variety of other stats that combine intervals with densities
and CDFs. See geom_slabinterval() for the geom that these geoms wrap. All parameters of that
geom are available to these geoms.

geom_slabinterval 33

Examples

library(dplyr)
library(ggplot2)

data(RankCorr_u_tau, package = "ggdist")

orientation is detected automatically based on
use of xmin/xmax or ymin/ymax

RankCorr_u_tau %>%
group_by (i) %>%
median_qi(.width = c(.8, .95)) %>%
ggplot(aes(y = i, x = u_tau, xmin = .lower, xmax = .upper)) +
geom_pointinterval()

RankCorr_u_tau %>%
group_by (i) %>%
median_qi(.width = c(.8, .95)) %>%
ggplot(aes(x = i, y = u_tau, ymin = .lower, ymax = .upper)) +
geom_pointinterval()

geom_slabinterval Slab + point + interval meta-geom

Description

This meta-geom supports drawing combinations of functions (as slabs, aka ridge plots or joy plots),
points, and intervals. It acts as a meta-geom for many other tidybayes geoms that are wrappers
around this geom, including eye plots, half-eye plots, CCDF barplots, and point+multiple interval
plots, and supports both horizontal and vertical orientations, dodging (via the position argument),
and relative justification of slabs with their corresponding intervals.

Usage

geom_slabinterval(
mapping = NULL,

data = NULL,
stat = "identity",
position = "identity",

orientation = NA,

normalize = c("all”, "panels"”, "xy", "groups”, "none"),
fill_type = c("segments”, "gradient"),
interval_size_domain = c(1, 6),

interval_size_range = c(0.6, 1.4),

fatten_point = 1.8,

34 geom_slabinterval

show_slab = TRUE,
show_point = TRUE,
show_interval = TRUE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_slab(
mapping = NULL,
data = NULL,
stat = "identity"”,
position = "identity"”,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

Arguments

mapping Set of aesthetic mappings created by aes () or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x,10)).

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

Other arguments passed to layer ().

orientation Whether this geom is drawn horizontally ("horizontal”) or vertically ("vertical”).
The default, NA, automatically detects the orientation based on how the aesthetics
are assigned, and should generally do an okay job at this. When horizontal (resp.
vertical), the geom uses the y (resp. x) aesthetic to identify different groups,
then for each group uses the x (resp. y) aesthetic and the thickness aesthetic
to draw a function as an slab, and draws points and intervals horizontally (resp.
vertically) using the xmin, x, and xmax (resp. ymin, y, and ymax) aesthetics.
For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical” and "y" as an alias for "horizontal”

(tidybayes had an orientation parameter before ggplot did, and I think the

geom_slabinterval 35

no,n

tidybayes naming scheme is more intuitive: "x" and "y" are not orientations
and their mapping to orientations is, in my opinion, backwards; but the base
ggplot naming scheme is allowed for compatibility).

normalize How to normalize heights of functions input to the thickness aesthetic. If
"all” (the default), normalize so that the maximum height across all data is
1; if "panels”, normalize within panels so that the maximum height in each
panel is 1; if "xy", normalize within the x/y axis opposite the orientation of
this geom so that the maximum height at each value of the opposite axis is 1;
if "groups”, normalize within values of the opposite axis and within groups so
that the maximum height in each group is 1; if "none”, values are taken as is
with no normalization (this should probably only be used with functions whose
values are in [0,1], such as CDFs).

fill_type What type of fill to use when the fill color or alpha varies within a slab. The de-
fault, "segments”, breaks up the slab geometry into segments for each unique
combination of fill color and alpha value. This approach is supported by all
graphics devices and works well for sharp cutoff values, but can result in ugly re-
sults if a large number of unique fill colors are being used (as in gradients, like in
stat_gradientinterval()). When fill_type == "gradient"”,alinearGradient()
is used to create a smooth gradient fill. This works well for large numbers of
unique fill colors, but requires R > 4.1 and is not yet supported on all graphics
devices.

interval_size_domain
The minimum and maximum of the values of the size aesthetic that will be trans-
lated into actual sizes for intervals drawn according to interval_size_range
(see the documentation for that argument.)

interval_size_range
(Deprecated). This geom scales the raw size aesthetic values when drawing
interval and point sizes, as they tend to be too thick when using the default set-
tings of scale_size_continuous(), which give sizes with a range of c(1,6).
The interval_size_domain value indicates the input domain of raw size val-
ues (typically this should be equal to the value of the range argument of the
scale_size_continuous() function), and interval_size_range indicates the
desired output range of the size values (the min and max of the actual sizes used
to draw intervals). Most of the time it is not recommended to change the value
of this argument, as it may result in strange scaling of legends; this argument
is a holdover from earlier versions that did not have size aesthetics targeting
the point and interval separately. If you want to adjust the size of the interval
or points separately, you can instead use the interval_size or point_size
aesthetics; see scales.

fatten_point A multiplicative factor used to adjust the size of the point relative to the size
of the thickest interval line. If you wish to specify point sizes directly, you can
also use the point_size aesthetic and scale_point_size_continuous() or
scale_point_size_discrete(); sizes specified with that aesthetic will not be
adjusted using fatten_point.

show_slab Should the slab portion of the geom be drawn? Default TRUE.

show_point Should the point portion of the geom be drawn? Default TRUE.

show_interval Should the interval portion of the geom be drawn? Default TRUE.

36 geom_slabinterval

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

geom_slabinterval is a flexible meta-geom that you can use directly or through a variety of "short-
cut" geoms that represent useful combinations of the various parameters of this geom. In many cases
you will want to use the shortcut geoms instead as they create more useful mnemonic primitives,
such as eye plots, half-eye plots, point+interval plots, or CCDF barplots.

The slab portion of the geom is much like a ridge or "joy" plot: it represents the value of a function
scaled to fit between values on the x or y access (depending on the value of orientation). Values
of the functions are specified using the thickness aesthetic and are scaled to fit into scale times
the distance between points on the relevant axis. E.g., if orientation is "horizontal”, scale is
0.9, and y is a discrete variable, then the thickness aesthetic specifies the value of some function
of x that is drawn for every y value and scaled to fit into 0.9 times the distance between points on
the y axis.

For the interval portion of the geom, x and y aesthetics specify the location of the point and
ymin/ymax or xmin/xmax (depending on the value of orientation specifying the endpoints of the

interval. A scaling factor for interval line width and point size is applied through the interval_size_domain,
interval_size_range, and fatten_point parameters. These scaling factors are designed to give

multiple uncertainty intervals reasonable scaling at the default settings for scale_size_continuous().

As a combination geom, this geom expects a datatype aesthetic specifying which part of the geom

a given row in the input data corresponds to: "slab” or "interval”. However, specifying this
aesthetic manually is typically only necessary if you use this geom directly; the numerous wrapper

geoms will usually set this aesthetic for you as needed, and their use is recommended unless you

have a very custom use case.

Wrapper geoms and stats include:

e stat_sample_slabinterval() and associated stats
e stat_dist_slabinterval() and associated stats
e geom_pointinterval() /stat_pointinterval()
e geom_interval() /stat_interval()
e geom_dots() /stat_dots()
Typically, the geom_* versions are meant for use with already-summarized data (such as intervals)

and the stat_* versions are summarize the data themselves (usually draws from a distribution) to
produce the geom.

Value

A ggplot2::Geom representing a slab or combined slab+interval geometry which can be added to a
ggplot() object.

geom_slabinterval 37

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.

Positional aesthetics

X: X position of the geometry

y: y position of the geometry

Slab-specific aesthetics

thickness: The thickness of the slab at each x value (if orientation = "horizontal”) ory
value (if orientation = "vertical”) of the slab.

side: Which side to place the slab on. "topright”, "top"”, and "right” are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal” or "vertical”. "bottomleft"”, "bottom”, and "left"” are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal” or "vertical”. "topleft” causes the slab to be drawn on the top or the
left, and "bottomright” causes the slab to be drawn on the bottom or the right. "both"” draws
the slab mirrored on both sides (as in a violin plot).

scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
=1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space.

justification: Justification of the interval relative to the slab, where 0 indicates bottom/left

justification and 1 indicates top/right justification (depending on orientation). If justification

is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right"” justification is set to @, when side is "bottom”/"left"” justification
is set to 1, and when side is "both” justification is set to 0.5.

datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with

datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval”

target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

xmin: Left end of the interval sub-geometry (if orientation = "horizontal").
xmax: Right end of the interval sub-geometry (if orientation = "horizontal").
ymin: Lower end of the interval sub-geometry (if orientation = "vertical”).

ymax: Upper end of the interval sub-geometry (if orientation = "vertical”).

Point-specific aesthetics

shape: Shape type used to draw the point sub-geometry.

Color aesthetics

colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

38

geom_slabinterval

fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

fill_ramp: (or fill_ramp) A secondary scale that modifies the fill scale to "ramp" to
another color. See scale_fill_ramp() for examples.

Line aesthetics

size: Width of the outline around the slab (if visible). Also determines the width of the line
used to draw the interval and the size of the point, but raw size values are transformed ac-
cording to the interval_size_domain, interval_size_range, and fatten_point param-
eters of the geom (see above). Use the slab_size, interval_size, or point_size aesthetics
(below) to set sub-geometry line widths separately (note that when size is set directly using
the override aesthetics, interval and point sizes are not affected by interval_size_domain,
interval_size_range, and fatten_point).

stroke: Width of the outline around the point sub-geometry.

linetype: Type of line (e.g., "solid", "dashed”, etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color/line override aesthetics

slab_fill: Override for fill: the fill color of the slab.

slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.
slab_alpha: Override for alpha: the opacity of the slab.

slab_size: Override for size: the width of the outline of the slab.

slab_linetype: Override for linetype: the line type of the outline of the slab.

Interval-specific color/line override aesthetics

interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

interval_alpha: Override for alpha: the opacity of the interval.
interval_size: Override for size: the line width of the interval.

interval_linetype: Override for linetype: the line type of the interval.

Point-specific color/line override aesthetics

point_fill: Override for fill: the fill color of the point.
point_colour: (or point_color) Override for colour/color: the outline color of the point.
point_alpha: Override for alpha: the opacity of the point.

point_size: Override for size: the size of the point.

Other aesthetics (these work as in standard geoms)

Ikjcorr_marginal 39

e width
* height
e group
See examples of some of these aesthetics in action in vignette(”slabinterval”). Learn more

about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs”).

Author(s)

Matthew Kay

See Also

See geom_lineribbon() for a combination geom designed for fit curves plus probability bands.
See stat_sample_slabinterval() and stat_dist_slabinterval() for families of stats built on
top of this geom for common use cases (like stat_halfeye()). See vignette(”slabinterval")
for a variety of examples of use.

Examples

geom_slabinterval() is typically not that useful on its own.

See vignette("slabinterval”) for a variety of examples of the use of its
shortcut geoms and stats, which are more useful than using

geom_slabinterval() directly.

lkjcorr_marginal Marginal distribution of a single correlation from an LKJ distribution

Description

Marginal distribution for the correlation in a single cell from a correlation matrix distributed ac-
cording to an LKJ distribution.

Usage
dlkjcorr_marginal(x, K, eta, log = FALSE)
plkjcorr_marginal(q, K, eta, lower.tail = TRUE, log.p = FALSE)

TRUE, log.p = FALSE)

glkjcorr_marginal(p, K, eta, lower.tail

rlkjcorr_marginal(n, K, eta)

40 Ikjcorr_marginal

Arguments
X vector of quantiles.
K Dimension of the correlation matrix. Must be greater than or equal to 2.
eta Parameter controlling the shape of the distribution
log logical; if TRUE, probabilities p are given as log(p).
q vector of quantiles.
lower.tail logical; if TRUE (default), probabilities are P[X < z] otherwise, P[X > z].
log.p logical; if TRUE, probabilities p are given as log(p).
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number
required.
Details

The LKJ distribution is a distribution over correlation matrices with a single parameter, 7. For a
given g and a ' x K correlation matrix R:

R ~ LKI(n)

Each off-diagonal entry of R, 7;; : i # j, has the following marginal distribution (Lewandowski,
Kurowicka, and Joe 2009):

ij +1 K K
WwBeta<n1+2,nl+2>

In other words, 7;; is marginally distributed according to the above Beta distribution scaled into
(-1,1).

Value

* dlkjcorr_marginal gives the density

* plkjcorr_marginal gives the cumulative distribution function (CDF)
* glkjcorr_marginal gives the quantile function (inverse CDF)

* rlkjcorr_marginal generates random draws.

The length of the result is determined by n for rlkjcorr_marginal, and is the maximum of the
lengths of the numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result. Only the first elements
of the logical arguments are used.

References

Lewandowski, D., Kurowicka, D., & Joe, H. (2009). Generating random correlation matrices
based on vines and extended onion method. Journal of Multivariate Analysis, 100(9), 1989-2001.
doi: 10.1016/j.jmva.2009.04.008.

https://doi.org/10.1016/j.jmva.2009.04.008

marginalize_lkjcorr 41

See Also

parse_dist() and marginalize_lkjcorr() for parsing specs that use the LKJ correlation distri-
bution and the stat_dist_slabinterval() family of stats for visualizing them.

Examples

library(dplyr)
library(ggplot2)
library(forcats)
theme_set (theme_ggdist())

expand.grid(

eta = 1:6,
K=2:6
) %>%

ggplot(aes(y = fct_rev(ordered(eta)), dist = "lkjcorr_marginal”, argl =K, arg2 = eta)) +
stat_dist_slab() +
facet_grid(~ pasted(K, "x", K)) +
labs(
title = paste@(
"Marginal correlation for LKJ(eta) prior on different matrix sizes:\n",
"dlkjcorr_marginal(K, eta)"

)7
subtitle = "Correlation matrix size (KxK)",
y = "eta”,
x = "Marginal correlation”
) +

theme(axis.title = element_text(hjust = @))

marginalize_lkjcorr Turn spec for LKJ distribution into spec for marginal LKJ distribution

Description

Turns specs for an LKJ correlation matrix distribution as returned by parse_dist() into specs for
the marginal distribution of a single cell in an LKJ-distributed correlation matrix (i.e., Lkjcorr_marginal ()).
Useful for visualizing prior correlations from LKJ distributions.

Usage

marginalize_lkjcorr(data, K, predicate = NULL, dist = ".dist"”, args = ".args")

42 marginalize_lkjcorr

Arguments
data A data frame containing a column with distribution names (" .dist" by default)
and a list column of distribution arguments (" . args” by default), such as output
by parse_dist().
K Dimension of the correlation matrix. Must be greater than or equal to 2.
predicate a bare expression for selecting the rows of data to modify. This is useful if data
contains more than one row with an LKJ prior in it and you only want to modify
some of the distributions; if this is the case, give row a predicate expression
(such as you might supply to dplyr::filter()) that evaluates to TRUE on the
rows you want to modify. If NULL (the default), all 1kjcorr distributions in data
are modified.
dist The name of the column containing distribution names. See parse_dist().
args The name of the column containing distribution arguments. See parse_dist().
Details

The LKJ(eta) prior on a correlation matrix induces a marginal prior on each correlation in the matrix
that depends on both the value of eta and K,the dimension of the K x K correlation matrix. Thus
to visualize the marginal prior on the correlations, it is necessary to specify the value of K, which
depends on what your model specification looks like.

Given a data frame representing parsed distribution specifications (such as returned by parse_dist()),
this function updates any rows with .dist == "lkjcorr" so that the first argument to the distri-
bution is equal to the specified dimension of the correlation matrix (K) and changes the distri-
bution name to "lkjcorr_marginal”, allowing the distribution to be easily visualized using the
stat_dist_slabinterval() family of ggplot2 stats.

Value

A data frame of the same size and column names as the input, with the dist and args columns
modified on rows where dist == "1lkjcorr” such that they represent a marginal LKJ correlation
distribution with name lkjcorr_marginal and args having K equal to the input value of K.

See Also

parse_dist(), lkjcorr_marginal()
Examples

library(dplyr)
library(ggplot2)

Say we have an LKJ(3) prior on a 2x2 correlation matrix. We can visualize
its marginal distribution as follows...
data.frame(prior = "lkjcorr(3)") %>%

parse_dist(prior) %>%

marginalize_lkjcorr(K = 2) %>%

ggplot(aes(y = prior, dist = .dist, args = .args)) +

parse_dist 43

stat_dist_halfeye() +
xlim(-1, 1) +
xlab("Marginal correlation for LKJ(3) prior on 2x2 correlation matrix")

Say our prior list has multiple LKJ priors on correlation matrices

of different sizes, we can supply a predicate expression to select

only those rows we want to modify

data.frame(coef = c("a", "b"), prior = "lkjcorr(3)") %>%
parse_dist(prior) %>%
marginalize_lkjcorr(K
marginalize_lkjcorr(K

2, coef == "a") %>%
4, coef == "b")

parse_dist Parse distribution specifications into columns of a data frame

Description

Parses simple string distribution specifications, like "normal(@,1)", into two columns of a data
frame, suitable for use with stat_dist_slabinterval() and its shortcut stats (like stat_dist_halfeye).
This format is output by brms: : get_prior, making it particularly useful for visualizing priors from

brms models.

Usage

parse_dist(object, ..., dist = ".dist", args = ".args", to_r_names = TRUE)

Default S3 method:
parse_dist(object, ...)

S3 method for class 'data.frame'
parse_dist(

object,

dist_col,

dist = ".dist",

args = ".args",

to_r_names = TRUE

S3 method for class 'character'
parse_dist(object, ..., dist = ".dist", args = ".args", to_r_names = TRUE)

S3 method for class 'factor’
parse_dist(object, ..., dist = ".dist", args = ".args"”, to_r_names = TRUE)

S3 method for class 'brmsprior'
parse_dist(

44

object,

parse_dist

dist_col = prior,

D

dist = ".dist",
args = ".args",

to_r_names =

TRUE

r_dist_name(dist_name)

Arguments

object

dist
args

to_r_names

dist_col

dist_name

Details

A character vector containing distribution specifications or a data frame with a
column containing distribution specifications.

Arguments passed to other implementations of parse_dist.
The name of the output column to contain the distribution name
The name of the output column to contain the arguments to the distribution

If TRUE (the default), certain common aliases for distribution names are auto-
matically translated into names that R can recognize (i.e., names which have
functions starting with r, p, g, and d representing random number generators,
distribution functions, etc. for that distribution), using the r_dist_name func-
tion. For example, "normal” is translated into "norm” and "lognormal” is
translated into "1norm".

A bare (unquoted) column or column expression that resolves to a character
vector of distribution specifications.

For r_dist_name, a character vector of distribution names to be translated into
distribution names R recognizes. Unrecognized names are left as-is.

parse_dist() can be applied to character vectors or to a data frame + bare column name of the col-
umn to parse, and returns a data frame with " .dist" and ".args" columns added. parse_dist()
uses r_dist_name() to translate distribution names into names recognized by R.

r_dist_name() takes a character vector of names and translates common names into R distribution
names. Names are first made into valid R names using make.names(), then translated (ignoring
character case, ".", and "_"). Thus, "lognormal”, "LogNormal”, "log_normal"”, "log-Normal”,
and any number of other variants all get translated into "1norm”.

Value

* parse_dist returns a data frame containing at least two columns named after the dist and
args parameters. If the input is a data frame, the output is a data frame of the same length
with those two columns added. If the input is a character vector or factor, the output is a
two-column data frame with the same number of rows as the length of the input.

e r_dist_name returns a character vector the same length as the input containing translations
of the input names into distribution names R can recognize.

point_interval 45

See Also

See stat_dist_slabinterval() and its shortcut stats, which can easily make use of the output of
this function using the dist and args aesthetics.

Examples

library(dplyr)

parse dist can operate on strings directly...
parse_dist(c("normal(@,1)"”, "student_t(3,0,1)"))

... or on columns of a data frame, where it adds the

parsed specs back on as columns

data.frame(prior = c("normal(@,1)"”, "student_t(3,0,1)")) %>%
parse_dist(prior)

parse_dist is particularly useful with the output of brms::prior(),
which follow the same format as above

point_interval Point and interval summaries for tidy data frames of draws from dis-
tributions

Description

Translates draws from distributions in a (possibly grouped) data frame into point and interval sum-
maries (or set of point and interval summaries, if there are multiple groups in a grouped data frame).

Usage
point_interval(
.data,
.width = 9.95,

.point = median,

.interval = qi,

.simple_names = TRUE,

na.rm = FALSE,

.exclude = c(".chain”, ".iteration"”, ".draw”, ".row"),
.prob

Default S3 method:
point_interval(
.data,

L

46

.width = 0.95,

.point = median,
.interval = qi,
.simple_names = TRUE,
na.rm = FALSE,

.exclude = c(".chain”, ".iteration”,

.prob

S3 method for class 'numeric'
point_interval(
.data,

.width = 0.95,

.point = median,

.interval = qi,

.simple_names = FALSE,

na.rm = FALSE,

.exclude = c(".chain”, ".iteration”,
.prob

)

S3 method for class 'rvar'
point_interval(
.data,

.width = 0.95,

.point = median,
.interval = qi,
.simple_names = TRUE,
na.rm = FALSE

S3 method for class 'distribution'
point_interval(
.data,

.width = 0.95,

.point = median,
.interval = qi,
.simple_names = TRUE,
na.rm = FALSE

S3 method for class 'dist_default'
point_interval(
.data,

L

".draw”, ".row"),

".draw”, ".row"),

point_interval

point_interval

.width = 0.95,
.point = median,
.interval = qi,
.simple_names = TRUE
na.rm = FALSE

)

’

gi(x, .width = 0.95, .prob, na.rm = FALSE)

hdi(x, .width

0.95,
Mode(x, na.rm = FALSE)

Default S3 method:
Mode(x, na.rm = FALSE)

S3 method for class
Mode(x, na.rm = FALSE)

S3 method for class
Mode(x, na.rm = FALSE)

S3 method for class
Mode(x, na.rm = FALSE)

S3 method for class
Mode(x, na.rm = FALSE)

hdci(x, .width = .95,

.prob, na.rm = FALSE,

"rvar'

'dist_sample'

'dist_default'

'distribution’

na.rm = FALSE)

mean_qgi(.data, ..., .width = 0.95)
median_qi(.data, ..., .width = 0.95)
mode_qi(.data, ..., .width = 0.95)
mean_hdi(.data, ..., .width = 0.95)
median_hdi(.data, ..., .width = 0.95)
mode_hdi(.data, ..., .width = 0.95)
mean_hdci(.data, ..., .width = 0.95)
median_hdci(.data, ., .width = 0.95)
mode_hdci(.data, ..., .width = 0.95)

)

47

48

Arguments

.data

.width

.point

.interval

.simple_names

point_interval

Data frame (or grouped data frame as returned by group_by()) that contains
draws to summarize.

Bare column names or expressions that, when evaluated in the context of .data,
represent draws to summarize. If this is empty, then by default all columns that
are not group columns and which are not in .exclude (by default ".chain”,
".iteration”, ".draw", and ".row") will be summarized. These columns
can be numeric, distributional objects, posterior: :rvars, or list columns of
numeric values to summarise.

vector of probabilities to use that determine the widths of the resulting intervals.
If multiple probabilities are provided, multiple rows per group are generated,
each with a different probability interval (and value of the corresponding .width
column).

Point summary function, which takes a vector and returns a single value, e.g.
mean(), median(), or Mode().

Interval function, which takes a vector and a probability (.width) and returns a
two-element vector representing the lower and upper bound of an interval; e.g.
qi(), hdi()

When TRUE and only a single column / vector is to be summarized, use the name
. Llower for the lower end of the interval and . upper for the upper end. If . data
is a vector and this is TRUE, this will also set the column name of the point
summary to .value. When FALSE and .data is a data frame, names the lower
and upper intervals for each column x x.lower and x.upper. When FALSE
and .data is a vector, uses the naming scheme y, ymin and ymax (for use with

ggplot).

na.rm logical value indicating whether NA values should be stripped before the com-
putation proceeds. If FALSE (the default), any vectors to be summarized that
contain NA will result in point and interval summaries equal to NA.

.exclude A character vector of names of columns to be excluded from summarization
if no column names are specified to be summarized. Default ignores several
meta-data column names used in tidybayes.

.prob Deprecated. Use .width instead.

X vector to summarize (for interval functions: gi and hdi)

Details
If .data is a data frame, then . .. is a list of bare names of columns (or expressions derived from

columns) of .data, on which the point and interval summaries are derived. Column expressions
are processed using the tidy evaluation framework (see rlang: :eval_tidy()).

For a column named x, the resulting data frame will have a column named x containing its point
summary. If there is a single column to be summarized and . simple_names is TRUE, the output will
also contain columns . lower (the lower end of the interval), . upper (the upper end of the interval).
Otherwise, for every summarized column x, the output will contain x. lower (the lower end of the
interval) and x . upper (the upper end of the interval). Finally, the output will have a .width column
containing the’ probability for the interval on each output row.

point_interval 49

If .data includes groups (see e.g. dplyr::group_by()), the points and intervals are calculated
within the groups.

If .datais a vector, . .. is ignored and the result is a data frame with one row per value of .width
and three columns: y (the point summary), ymin (the lower end of the interval), ymax (the upper
end of the interval), and .width, the probability corresponding to the interval. This behavior al-
lows point_interval and its derived functions (like median_qi, mean_qi, mode_hdi, etc) to be
easily used to plot intervals in ggplot stats using methods like stat_eye(), stat_halfeye(), or
stat_summary().

median_qi, mode_hdi, etc are short forms for point_interval(...,.point =median, .interval
=qi), etc.

gi yields the quantile interval (also known as the percentile interval or equi-tailed interval) as a 1x2
matrix.

hdi yields the highest-density interval(s) (also known as the highest posterior density interval).
Note: If the distribution is multimodal, hdi may return multiple intervals for each probability level
(these will be spread over rows). You may wish to use hdci (below) instead if you want a single
highest-density interval, with the caveat that when the distribution is multimodal hdci is not a
highest-density interval. Internally hdi uses HDInterval: :hdi() with allowSplit = TRUE (when
multimodal) and with allowSplit = FALSE (when not multimodal).

hdci yields the highest-density continuous interval. Note: If the distribution is multimodal, this
may not actually be the highest-density interval (there may be a higher-density discontinuous in-
terval). Internally hdci uses HDInterval: :hdi() with allowSplit = FALSE; see that function for
more information on multimodality and continuous versus discontinuous intervals.

Value

A data frame containing point summaries and intervals, with at least one column corresponding
to the point summary, one to the lower end of the interval, one to the upper end of the interval,
the width of the interval (.width), the type of point summary (.point), and the type of interval
(.interval).

Author(s)
Matthew Kay

Examples

library(dplyr)
library(ggplot2)

set.seed(123)

rnorm(1000) %>%
median_qi()

data.frame(x = rnorm(1000)) %>%
median_qgi(x, .width = c(.50, .80, .95))

data.frame(

50 position_dodgejust

X = rnorm(1000),

y = rnorm(1000, mean = 2, sd = 2)
) %%
median_qi(x, y)

data.frame(
X = rnorm(1000),
group = "a"
) %%
rbind(data.frame(
X = rnorm(1000, mean = 2, sd = 2),
group = "b")
) %%
group_by(group) %>%
median_qi(.width = c(.50, .80, .95))

multimodal_draws = data.frame(
x = c(rnorm(5000, @, 1), rnorm(2500, 4, 1))
)

multimodal_draws %>%
mode_hdi(.width = c(.66, .95))

multimodal_draws %>%
ggplot(aes(x = x, y = 0)) +
stat_halfeye(point_interval = mode_hdi, .width = c(.66, .95))

position_dodgejust Dodge overlapping objects side-to-side, preserving justification

Description

A justification-preserving variant of ggplot2: :position_dodge() which preserves the vertical
position of a geom while adjusting the horizontal position (or vice versa when in a horizontal orien-
tation). Unlike ggplot2: :position_dodge(), position_dodgejust() attempts to preserve the
"justification" of x positions relative to the bounds containing them (xmin/xmax) (or y positions rel-
ative to ymin/ymax when in a horizontal orientation). This makes it useful for dodging annotations
to geoms and stats from the geom_slabinterval() family, which also preserve the justification of
their intervals relative to their slabs when dodging.

Usage

position_dodgejust(
width = NULL,
preserve = c("total”, "single"),
justification = NULL

)

position_dodgejust 51

Arguments
width Dodging width, when different to the width of the individual elements. This
is useful when you want to align narrow geoms with wider geoms. See the
examples.
preserve Should dodging preserve the total width of all elements at a position, or the

width of a single element?

justification Justification of the point position (x/y) relative to its bounds (xmin/xmax or
ymin/ymax), where @ indicates bottom/left justification and 1 indicates top/right
justification (depending on orientation). This is only used if xmin/xmax/ymin/ymax
are not supplied; in that case, justification will be used along with width to
determine the bounds of the object prior to dodging.

Examples

library(dplyr)
library(ggplot2)
library(distributional)

dist_df = tribble(
~group, ~subgroup, ~mean, ~sd,

1, "h", 5, 1,
2, "hr 7, 1.5,
3, "h", 8, 1,
3, "y 9, 1,
3, "y 7, 1

)

An example with normal "dodge"” positioning
Notice how dodge points are placed in the center of their bounding boxes,
which can cause slabs to be positioned outside their bounds.
dist_df %>%
ggplot(aes(
x = factor(group), dist = dist_normal(mean, sd),
fill = subgroup

)+
stat_dist_halfeye(
position = "dodge"
) +
geom_rect(
aes(xmin = group, xmax = group + 1, ymin = 2, ymax = 13, color = subgroup),
position = "dodge",
data = . %>% filter(group == 3),
alpha = 0.1
) +

geom_point(
aes(x = group, y = 7.5, color = subgroup),
position = position_dodge(width = 1),
data = . %>% filter(group == 3),
shape = 1,
size = 4,

52 scales
stroke = 1.5
) +
scale_fill_brewer(palette = "Set2") +
scale_color_brewer(palette = "Dark2")
This same example with "dodgejust” positioning. For the points we
supply a justification parameter to position_dodgejust which mimics the
justification parameter of stat_dist_halfeye, ensuring that they are
placed appropriately. On slabinterval family geoms, position_dodgejust()
will automatically detect the appropriate justification.
dist_df %>%
ggplot(aes(
x = factor(group), dist = dist_normal(mean, sd),
fill = subgroup
)+
stat_dist_halfeye(
position = "dodgejust"”
) +
geom_rect(
aes(xmin = group, xmax = group + 1, ymin = 2, ymax = 13, color = subgroup),
position = "dodgejust"”,
data = . %>% filter(group == 3),
alpha = 0.1
) +
geom_point(
aes(x = group, y = 7.5, color = subgroup),
position = position_dodgejust(width = 1, justification = @),
data = . %>% filter(group == 3),
shape = 1,
size = 4,
stroke = 1.5
) +
scale_fill_brewer(palette = "Set2") +
scale_color_brewer(palette = "Dark2")
scales Custom ggplot scales for geom_slabinterval (and derivatives)
Description
These scales allow more specific aesthetic mappings to be made when using geom_slabinterval()
and stats/geoms based on it (like eye plots).
Usage

scale_point_colour_discrete(..., aesthetics = "point_colour”)

scales

scale_point_color_discrete(..., aesthetics = "point_colour")

scale_point_colour_continuous(
L
aesthetics = "point_colour”,
guide = "colourbar2”

)

scale_point_color_continuous(
bl
aesthetics = "point_colour”,
guide = "colourbar2”

)
scale_point_fill_discrete(..., aesthetics = "point_fill")
scale_point_fill_continuous(

L

aesthetics = "point_fill",

guide = "colourbar2”
)
scale_point_alpha_continuous(..., range = c(0.1, 1))
scale_point_alpha_discrete(..., range = c(0.1, 1))
scale_point_size_continuous(..., range = c(1, 6))
scale_point_size_discrete(..., range = c(1, 6), na.translate = FALSE)
scale_interval_colour_discrete(..., aesthetics = "interval_colour")
scale_interval_color_discrete(..., aesthetics = "interval_colour")

scale_interval_colour_continuous(
<
aesthetics = "interval_colour”,
guide = "colourbar2”

)

scale_interval_color_continuous(
bl
aesthetics = "interval_colour”,
guide = "colourbar2”

)

scale_interval_alpha_continuous(..., range = c(0.1, 1))

53

scales

scale_interval_alpha_discrete(..., range = c(0.1, 1))
scale_interval_size_continuous(..., range = c(1, 6))
scale_interval_size_discrete(..., range = c(1, 6), na.translate = FALSE)
scale_interval_linetype_discrete(..., na.value = "blank")

scale_interval_linetype_continuous(...)
scale_slab_colour_discrete(..., aesthetics = "slab_colour”)
scale_slab_color_discrete(..., aesthetics = "slab_colour")

scale_slab_colour_continuous(
aesthetics = "slab_colour”,
guide = "colourbar2”

)

scale_slab_color_continuous(

L

aesthetics = "slab_colour”,

guide = "colourbar2”
)
scale_slab_fill_discrete(..., aesthetics = "slab_fill")
scale_slab_fill_continuous(..., aesthetics = "slab_fill", guide = "colourbar2")

scale_slab_alpha_continuous(

limits = function(l) c(min(e, 1CC111), 10C21D),
range = c(0, 1)

)

scale_slab_alpha_discrete(..., range = c(0.1, 1))
scale_slab_size_continuous(..., range = c(1, 6))
scale_slab_size_discrete(..., range = c(1, 6), na.translate = FALSE)
scale_slab_linetype_discrete(..., na.value = "blank")

scale_slab_linetype_continuous(...)

scale_slab_shape_discrete(..., solid = TRUE)

scales 55

scale_slab_shape_continuous(...)
guide_colourbar2(...)

guide_colorbar2(...)

Arguments
Arguments passed to underlying scale or guide functions. E.g. scale_point_color_discrete
passes arguments to scale_color_discrete(). See those functions for more
details.
aesthetics Names of aesthetics to set scales for.
guide Guide to use for legends for an aesthetic.
range a numeric vector of length 2 that specifies the minimum and maximum size of

the plotting symbol after transformation.
na.translate In discrete scales, should we show missing values?
na.value When na. translate is true, what value should be shown?
limits One of:

* NULL to use the default scale range

* A numeric vector of length two providing limits of the scale. Use NA to
refer to the existing minimum or maximum

* A function that accepts the existing (automatic) limits and returns new
limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

solid Should the shapes be solid, TRUE, or hollow, FALSE?

Details

The following additional scales / aesthetics are defined for use with geom_slabinterval() and
related geoms:

. scale_point_color_* Point color

. scale_point_fill_* Point fill color

. scale_point_alpha_* Point alpha level / opacity
. scale_point_size_* Point size

1
2
3
4
5. scale_interval_color_* Interval line color
6. scale_interval_alpha_* Interval alpha level / opacity
7. scale_interval_size_* Interval line width
8. scale_interval_linetype_* Interval line type
9. scale_slab_color_* Slab outline color
10. scale_slab_fill_* Slab fill color

11. scale_slab_alpha_* Slab alpha level / opacity. The default settings of scale_slab_alpha_continuous
differ from scale_alpha_continuous() and are designed for gradient plots (e.g. stat_gradientinterval())
by ensuring that densities of 0 get mapped to 0 in the output.

56 scales
12. scale_slab_size_* Slab outline line width
13. scale_slab_linetype_* Slab outline line type
14. scale_slab_shape_* Slab dot shape (for geom_dotsinterval())
See the corresponding scale documentation in ggplot for more information; e.g. scale_color_discrete(),
scale_color_continuous(), etc.
Other scale functions can be used with the aesthetics/scales defined here by using the aesthetics
argument to that scale function. For example, to use color brewer scales with the point_color
aesthetic:
scale_color_brewer(...,aesthetics = "point_color")
With continuous color scales, you may also need to provide a guide as the default guide does not
work properly; this is what guide_colorbar?2 is for:
scale_color_distiller(...,guide = "colorbar2"”,aesthetics = "point_color")
Value
A ggplot2::Scale representing one of the aesthetics used to target the appearance of specific parts of
composite ggdist geoms. Can be added to a ggplot() object.
Author(s)
Matthew Kay
See Also
Other ggplot2 scales: scale_color_discrete(), scale_color_continuous(), etc.
Other ggdist scales: scale_colour_ramp
Examples
library(dplyr)
library(ggplot2)

This plot shows how to set multiple specific aesthetics
NB it is very ugly and is only for demo purposes.
data.frame(distribution = "Normal(1,2)") %>%
parse_dist(distribution) %>%
ggplot(aes(y = distribution, dist = .dist, args = .args)) +
stat_dist_halfeye(
shape = 21, # this point shape has a fill and outline
point_color = "red",
point_fill = "black”,
point_alpha = .1,
point_size = 6,
stroke = 2,
interval_color = "blue”,
interval sizes are scaled from [1, 6] onto [@.6, 1.4] by default
see the interval_size_range parameter in help("geom_slabinterval”)

scale_colour_ramp 57

interval_size = 8,

interval_linetype = "dashed”,

interval_alpha = .25,

fill sets the fill color of the slab (here the density)
slab_color = "green”,

slab_fill = "purple”,

slab_size = 3,

slab_linetype = "dotted”,

slab_alpha = .5

scale_colour_ramp Secondary ggplot color scale that ramps from another color

Description

This scale creates a secondary scale that modifies the fill or color scale of geoms that support
it (geom_lineribbon() and geom_slabinterval()) to "ramp" from a secondary color (by default
white) to the primary fill color (determined by the standard color or fill aesthetics).

Usage

scale_colour_ramp_continuous(
from = "white"”,
limits = function(l) c(min(@, 1[[111), 1[[21D),
range = c(0, 1),
aesthetics = "colour_ramp”

scale_color_ramp_continuous(
from = "white",
limits = function(l) c(min(@, 1[[1]11), 1[[2]1D),
range = c(0, 1),
aesthetics = "colour_ramp”

scale_colour_ramp_discrete(
from = "white"”,
range = c(0.2, 1),
aesthetics = "colour_ramp”

)

scale_color_ramp_discrete(
from = "white",

58 scale_colour_ramp

range = c(0.2, 1),

aesthetics = "colour_ramp”
)
scale_fill_ramp_continuous(..., aesthetics = "fill_ramp")
scale_fill_ramp_discrete(..., aesthetics = "fill_ramp")
Arguments
from The color to ramp from. Corresponds to @ on the scale.
Arguments passed to underlying scale or guide functions. E.g. scale_colour_ramp_discrete(),
passes arguments to discrete_scale(), scale_colour_ramp_continuous()
passes arguments to continuous_scale(). See those functions for more de-
tails.
limits One of:
* NULL to use the default scale range
* A numeric vector of length two providing limits of the scale. Use NA to
refer to the existing minimum or maximum
* A function that accepts the existing (automatic) limits and returns new
limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).
range a numeric vector of length 2 that specifies the minimum and maximum values
after the scale transformation. These values should be between @ (the from
color) and 1 (the color determined by the fill aesthetic).
aesthetics Names of aesthetics to set scales for.
Value

A ggplot2::Scale representing a scale for the colour_ramp and/or fill_ramp aesthetics for ggdist
geoms. Can be added to a ggplot() object.

Author(s)
Matthew Kay

See Also

Other ggdist scales: scales

Examples

library(dplyr)
library(ggplot2)

stat_dist_slabinterval 59

library(distributional)

tibble(d = dist_uniform(@, 1)) %>%
ggplot(aes(y = 0, dist = d)) +
stat_dist_slab(aes(fill_ramp = stat(x)))

tibble(d = dist_uniform(@, 1)) %>%
ggplot(aes(y = 0, dist = d)) +
stat_dist_slab(aes(fill_ramp = stat(x)), fill = "blue”) +
scale_fill_ramp_continuous(from = "red")

you can invert the order of ‘range‘ to change the order of the blend
tibble(d = dist_normal(@, 1)) %>%
ggplot(aes(y = 0, dist =d)) +
stat_dist_slab(aes(fill_ramp = stat(cut_cdf_qi(cdf))), fill = "blue”) +
scale_fill_ramp_discrete(from = "red”, range = c(1, 0))

stat_dist_slabinterval

Distribution + interval plots (eye plots, half-eye plots, CCDF barplots,
etc) for analytical distributions (ggplot stat)

Description

Stats for computing distribution functions (densities or CDFs) + intervals for use with geom_slabinterval().
Uses the dist aesthetic to specify a distribution using objects from the distributional package, or us-

ing distribution names and arg1, ... arg9 aesthetics (or args as a list column) to specify distribution
arguments. See Details.

Usage

stat_dist_slabinterval(
mapping = NULL,

data = NULL,
geom = "slabinterval”,
position = "identity"”,

slab_type = c("pdf"”, "cdf”", "ccdf"),
p_limits = c(NA, NA),

outline_bars = FALSE,

orientation = NA,

limits = NULL,

n = 501,

.width = c(0.66, 0.95),

show_slab = TRUE,

show_interval = TRUE,

na.rm = FALSE,

https://pkg.mitchelloharawild.com/distributional/

60

)

show.legend =
inherit.aes

c(size = FALSE),
TRUE

stat_dist_halfeye(...)

stat_dist_eye(

)

mapping = NULL,

data = NULL,

geom = "slabinterval”,
position = "identity",
show.legend =
inherit.aes =

c(size =
TRUE

FALSE),

stat_dist_ccdfinterval(

)

stat_dist_cdfinterval(..., slab_type =

mapping = NULL,

data = NULL,

geom = "slabinterval”,
position = "identity",

slab_type = "ccdf”,
normalize = "none”,
show.legend = c(size =
inherit.aes = TRUE

FALSE),

stat_dist_gradientinterval(

)

mapping = NULL,

data = NULL,

geom = "slabinterval”,
position = "identity",
show. legend
inherit.aes

c(size =
TRUE

ncdfn ,

FALSE, slab_alpha =

stat_dist_slabinterval

normalize = "none")

FALSE),

stat_dist_pointinterval(..., show_slab = FALSE)

stat_dist_interval(

mapping = NULL,

data = NULL,

geom = "interval”,
position = "identity"”,

L

stat_dist_slabinterval 61

show_slab = FALSE,
show_point = FALSE,
show.legend = NA,

inherit.aes = TRUE

)

stat_dist_slab(
mapping = NULL,

data = NULL,
geom = "slab",
position = "identity",
show.legend = NA,
inherit.aes = TRUE
)
Arguments
mapping Set of aesthetic mappings created by aes () or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.
data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).
geom Use to override the default connection between stat_slabinterval and geom_slabinterval()
position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.
Other arguments passed to layer (). They may also be arguments to the paired
geom (e.g., geom_pointinterval())
slab_type The type of slab function to calculate: probability density (or mass) function
("pdf™), cumulative distribution function ("cdf"), or complementary CDF ("ccdf").
p_limits Probability limits (as a vector of size 2) used to determine the lower and upper

limits of the slab. E.g., if this is c(. @01, .999), then a slab is drawn for the dis-
tribution from the quantile at p = .01 to the quantile at p = .999. If the lower
(respectively upper) limit is NA, then the lower (upper) limit will be the mini-
mum (maximum) of the distribution’s support if it is finite, and 0.001 (0.999)
if it is not finite. E.g., if p_limits is c(NA,NA) on a gamma distribution the
effective value of p_limits would be c(@, .999) since the gamma distribution
is defined on (0, Inf); whereas on a normal distribution it would be equivalent to
c(.001,.999) since the normal distribution is defined on (-Inf, Inf).

62

outline_bars

orientation

limits

n

.width
show_slab
show_interval
na.rm

show. legend

inherit.aes

normalize

show_point

stat_dist_slabinterval

For discrete distributions (whose slabs are drawn as histograms), determines if
outlines in between the bars are drawn when the slab_color aesthetic is used.
If FALSE (the default), the outline is drawn only along the tops of the bars; if
TRUE, outlines in between bars are also drawn.

Whether this geom is drawn horizontally ("horizontal”) or vertically ("vertical”).

The default, NA, automatically detects the orientation based on how the aesthetics
are assigned, and should generally do an okay job at this. When horizontal (resp.
vertical), the geom uses the y (resp. x) aesthetic to identify different groups,
then for each group uses the x (resp. y) aesthetic and the thickness aesthetic
to draw a function as an slab, and draws points and intervals horizontally (resp.
vertically) using the xmin, x, and xmax (resp. ymin, y, and ymax) aesthetics.
For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical” and "y" as an alias for "horizontal”
(tidybayes had an orientation parameter before ggplot did, and I think the
tidybayes naming scheme is more intuitive: "x" and "y" are not orientations
and their mapping to orientations is, in my opinion, backwards; but the base

ggplot naming scheme is allowed for compatibility).

Manually-specified limits for the slab, as a vector of length two. These limits
are combined with those computed based on p_limits as well as the limits
defined by the scales of the plot to determine the limits used to draw the slab
functions: these limits specify the maximal limits; i.e., if specified, the limits
will not be wider than these (but may be narrower).Use NA to leave a limit alone;
e.g. limits = c(@,NA) will ensure that the lower limit does not go below 0, but
let the upper limit be determined by either p_limits or the scale settings.

Number of points at which to evaluate slab_function

The .width argument passed to interval_function or point_interval.
Should the slab portion of the geom be drawn? Default TRUE.

Should the interval portion of the geom be drawn? Default TRUE.

If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

Should this layer be included in the legends? Default is c(size = FALSE), unlike
most geoms, to match its common use cases. FALSE hides all legends, TRUE
shows all legends, and NA shows only those that are mapped (the default for
most geoms).

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

How to normalize heights of functions input to the thickness aesthetic. If
"all” (the default), normalize so that the maximum height across all data is
1; if "panels”, normalize within panels so that the maximum height in each
panel is 1; if "xy", normalize within the x/y axis opposite the orientation of
this geom so that the maximum height at each value of the opposite axis is 1;
if "groups”, normalize within values of the opposite axis and within groups so
that the maximum height in each group is 1; if "none”, values are taken as is
with no normalization (this should probably only be used with functions whose
values are in [0,1], such as CDFs).

Should the point portion of the geom be drawn? Default TRUE.

stat_dist_slabinterval 63

Details

A highly configurable stat for generating a variety of plots that combine a "slab" that describes a
distribution plus an interval. Several "shortcut" stats are provided which combine multiple options
to create useful geoms, particularly eye plots (a combination of a violin plot and interval), half-eye
plots (a density plus interval), and CCDF bar plots (a complementary CDF plus interval).

The shortcut stat names follow the pattern stat_dist_[name].

Stats include:

stat_dist_eye: Eye plots (violin + interval)
stat_dist_halfeye: Half-eye plots (density + interval)
stat_dist_ccdfinterval: CCDF bar plots (CCDF + interval)
stat_dist_cdfinterval: CDF bar plots (CDF + interval)
stat_dist_gradientinterval: Density gradient + interval plots
stat_dist_pointinterval: Point + interval plots

stat_dist_interval: Interval plots

These stats expect a dist aesthetic to specify a distribution. This aesthetic can be used in one of
two ways:

Value

* dist can be any distribution object from the distributional package, such as dist_normal(),

dist_beta(), etc. Since these functions are vectorized, other columns can be passed directly
to them in an aes() specification; e.g. aes(dist =dist_normal(mu,sigma)) will work if
mu and sigma are columns in the input data frame.

dist can be a character vector giving the distribution name. Then the argl, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p”, "q", and "d" functions; e.g. "norm” is a valid dis-
tribution name because R defines the pnorm(), gnorm(), and dnorm() functions for Normal

distributions.

See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(@,1)"). Such specs are also produced by
other packages (like the brms: : get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

A ggplot2::Stat representing a slab or combined slab+interval geometry which can be added to a
ggplot() object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the stat() or after_stat() functions:

» x or y: For slabs, the input values to the slab function. For intervals, the point summary from

the interval function. Whether it is x or y depends on orientation

e xmin or ymin: For intervals, the lower end of the interval from the interval function.

https://pkg.mitchelloharawild.com/distributional/

64 stat_dist_slabinterval

* xmax or ymax: For intervals, the upper end of the interval from the interval function.
e .width: For intervals, the interval width as a numeric value in [0, 1].
¢ level: For intervals, the interval width as an ordered factor.

* f: For slabs, the output values from the slab function (such as the PDF, CDF, or CCDF),
determined by slab_type.

pdf: For slabs, the probability density function.

cdf: For slabs, the cumulative distribution function.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.

These stats support the following aesthetics:

* x: X position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal"”) except for stat_dist_ geometries (which use
only one of x or y at a time along with the dist aesthetic).

* y: y position of the geometry (when orientation = "horizontal”); or sample data to be sum-
marized (when orientation = "vertical”) except for stat_dist_ geometries (which use
only one of x or y at a time along with the dist aesthetic).

e dist: A name of a distribution (e.g. "norm”) or a distributional object (e.g. dist_normal()).
See Details.

* args: Distribution arguments (args or argl, ... arg9). See Details.

In addition, in their default configuration (paired with geom_slabinterval()) the following aes-
thetics are supported by the underlying geom:

Slab-specific aesthetics

* thickness: The thickness of the slab at each x value (if orientation = "horizontal”) ory
value (if orientation = "vertical”) of the slab.

* side: Which side to place the slab on. "topright”, "top”, and "right"” are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal” or "vertical”. "bottomleft"”, "bottom”, and "left” are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal” or "vertical”. "topleft” causes the slab to be drawn on the top or the
left, and "bottomright” causes the slab to be drawn on the bottom or the right. "both"” draws
the slab mirrored on both sides (as in a violin plot).

* scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
=1, slabs that use the maximum range will just touch each other. Default is @. 9 to leave some
space.

e justification: Justification of the interval relative to the slab, where @ indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to @, when side is "bottom"/"left"” justification
is set to 1, and when side is "both” justification is set to 0.5.

stat_dist_slabinterval 65

* datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval”
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

* xmin: Left end of the interval sub-geometry (if orientation = "horizontal”).
» xmax: Right end of the interval sub-geometry (if orientation = "horizontal").
* ymin: Lower end of the interval sub-geometry (if orientation = "vertical”).

» ymax: Upper end of the interval sub-geometry (if orientation = "vertical”).
Point-specific aesthetics

* shape: Shape type used to draw the point sub-geometry.
Color aesthetics

* colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,

interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

e fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

* alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

e colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

e fill_ramp: (or fill_ramp) A secondary scale that modifies the fill scale to "ramp" to
another color. See scale_fill_ramp() for examples.

Line aesthetics

e size: Width of the outline around the slab (if visible). Also determines the width of the line
used to draw the interval and the size of the point, but raw size values are transformed ac-
cording to the interval_size_domain, interval_size_range, and fatten_point param-
eters of the geom (see above). Use the slab_size, interval_size, or point_size aesthetics
(below) to set sub-geometry line widths separately (note that when size is set directly using
the override aesthetics, interval and point sizes are not affected by interval_size_domain,
interval_size_range, and fatten_point).

* stroke: Width of the outline around the point sub-geometry.

e linetype: Type of line (e.g., "solid"”, "dashed”, etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color/line override aesthetics

e slab_fill: Override for fill: the fill color of the slab.
¢ slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

* slab_alpha: Override for alpha: the opacity of the slab.

66 stat_dist_slabinterval

* slab_size: Override for size: the width of the outline of the slab.
* slab_linetype: Override for linetype: the line type of the outline of the slab.
Interval-specific color/line override aesthetics
e interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.
* interval_alpha: Override for alpha: the opacity of the interval.
e interval_size: Override for size: the line width of the interval.

* interval_linetype: Override for linetype: the line type of the interval.
Point-specific color/line override aesthetics

e point_fill: Override for fill: the fill color of the point.
* point_colour: (or point_color) Override for colour/color: the outline color of the point.
* point_alpha: Override for alpha: the opacity of the point.

* point_size: Override for size: the size of the point.
Other aesthetics (these work as in standard geoms)

e width

* height

e group

See examples of some of these aesthetics in action in vignette(”slabinterval”). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs”).

See Also

See geom_slabinterval() for more information on the geom these stats use by default and some
of the options they have. See stat_sample_slabinterval() for the versions of these stats that
can be used on samples. See vignette(”slabinterval”) for a variety of examples of use.

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set (theme_ggdist())

dist_df = tribble(
~group, ~subgroup, ~mean, ~sd,

uan’ ”h”, 5, 1,
"y "h 7 1.5

’) ’ R
ncn "h 8 1

’) ’ ’
e nin 9 1

’ ’ ’ ’
"C”, ”j”, 7 1

stat_interval 67

)

dist_df %>%
ggplot(aes(x = group, dist = "norm”, argl = mean, arg2 = sd, fill = subgroup)) +
stat_dist_eye(position = "dodge")

Using functions from the distributional package (like dist_normal()) with the
dist aesthetic can lead to more compact/expressive specifications

dist_df %>%
ggplot(aes(x = group, dist = dist_normal(mean, sd), fill = subgroup)) +
stat_dist_eye(position = "dodge")

the stat_dist_... family applies a Jacobian adjustment to densities
when plotting on transformed scales in order to plot them correctly.
It determines the Jacobian using symbolic differentiation if possible,
using stats::D(). If symbolic differentation fails, it falls back
to numericDeriv(), which is less reliable; therefore, it is
advisable to use scale transformation functions that are defined in
terms of basic math functions so that their derivatives can be
determined analytically (most of the transformation functions in the
scales package currently have this property).
For example, here is a log-Normal distribution plotted on the log
scale, where it will appear Normal:
data.frame(dist = "lnorm”, logmean = log(10), logsd = 2*log(10)) %>%
ggplot(aes(y = 1, dist = dist, argl = logmean, arg2 = logsd)) +
stat_dist_halfeye() +
scale_x_logl@(breaks = 10*seq(-5,7, by = 2))

see vignette("slabinterval”) for many more examples.

stat_interval Multiple uncertainty interval plots (ggplot stat)

Description

A combination of stat_sample_slabinterval() and geom_slabinterval() with sensible de-
faults. While the corresponding geoms are intended for use on data frames that have already been
summarized using a point_interval() function, these stats are intended for use directly on data
frames of draws, and will perform the summarization using a point_interval() function.

Usage

stat_interval(
mapping = NULL,
data = NULL,
geom = "interval”,
position = "identity"”,

68 stat_interval

orientation = NA,
interval_function = NULL,
interval_args = list(),
point_interval = median_qi,
.width = c(0.5, 0.8, 0.95),
show_point = FALSE,
show_slab = FALSE,

na.rm = FALSE,

show.legend = NA,
inherit.aes = TRUE,

.prob,
fun.data,
fun.args
)
Arguments
mapping Set of aesthetic mappings created by aes () or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.
data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x,10)).
geom Use to override the default connection between stat_slabinterval and geom_slabinterval()
position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.
Other arguments passed to layer (). They may also be arguments to the paired
geom (e.g., geom_pointinterval())
orientation Whether this geom is drawn horizontally ("horizontal") or vertically ("vertical”).

The default, NA, automatically detects the orientation based on how the aesthetics
are assigned, and should generally do an okay job at this. When horizontal (resp.
vertical), the geom uses the y (resp. x) aesthetic to identify different groups,
then for each group uses the x (resp. y) aesthetic and the thickness aesthetic
to draw a function as an slab, and draws points and intervals horizontally (resp.
vertically) using the xmin, x, and xmax (resp. ymin, y, and ymax) aesthetics.
For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical” and "y" as an alias for "horizontal”
(tidybayes had an orientation parameter before ggplot did, and I think the

no,n

tidybayes naming scheme is more intuitive: "x" and "y" are not orientations

stat_interval

69

and their mapping to orientations is, in my opinion, backwards; but the base
ggplot naming scheme is allowed for compatibility).

interval_function

interval_args

Custom function for generating intervals (for most common use cases the point_interval
argument will be easier to use). This function takes a data frame of aesthetics

and a .width parameter (a vector of interval widths), and returns a data frame

with columns .width (from the .width vector), .value (point summary) and

.lower and .upper (endpoints of the intervals, given the .width). Output will

be converted to the appropriate x- or y-based aesthetics depending on the value

of orientation. If interval_function is NULL, point_interval is used in-

stead.

Additional arguments passed to interval_function or point_interval.

point_interval A function from the point_interval() family (e.g., median_qi, mean_qi,

.width
show_point
show_slab

na.rm

show. legend

inherit.aes

.prob
fun.data

fun.args

Value

etc). This function should take in a vector of value, and should obey the .width
and . simple_names parameters of point_interval () functions, such that when
given a vector with . simple_names = TRUE should return a data frame with vari-
ables .value, .lower, .upper, and .width. Output will be converted to the
appropriate x- or y-based aesthetics depending on the value of orientation.
See the point_interval() family of functions for more information.

The .width argument passed to interval_function or point_interval.
Should the point portion of the geom be drawn? Default TRUE.
Should the slab portion of the geom be drawn? Default TRUE.

If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

Should this layer be included in the legends? Default is c(size = FALSE), unlike
most geoms, to match its common use cases. FALSE hides all legends, TRUE
shows all legends, and NA shows only those that are mapped (the default for
most geoms).

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Deprecated. Use .width instead.
Deprecated. Use point_interval or interval_function instead.

Deprecated. Use interval_args instead.

A ggplot2::Stat representing a multiple interval geometry which can be added to a ggplot () object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the stat() or after_stat() functions:

» x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

70 stat_interval

e xmin or ymin: For intervals, the lower end of the interval from the interval function.
* xmax or ymax: For intervals, the upper end of the interval from the interval function.
e .width: For intervals, the interval width as a numeric value in [0, 1].

e level: For intervals, the interval width as an ordered factor.

» f: For slabs, the output values from the slab function (such as the PDF, CDF, or CCDF),
determined by slab_type.

* pdf: For slabs, the probability density function.
e cdf: For slabs, the cumulative distribution function.

* n: For slabs, the number of data points summarized into that slab.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.

These stats support the following aesthetics:

* x: X position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal"”) except for stat_dist_ geometries (which use
only one of x or y at a time along with the dist aesthetic).

* y: y position of the geometry (when orientation = "horizontal”); or sample data to be sum-
marized (when orientation = "vertical"”) except for stat_dist_ geometries (which use
only one of x or y at a time along with the dist aesthetic).

In addition, in their default configuration (paired with geom_interval()) the following aesthetics
are supported by the underlying geom:

Slab-specific aesthetics

¢ thickness: The thickness of the slab at each x value (if orientation = "horizontal”) ory
value (if orientation = "vertical”) of the slab.

* side: Which side to place the slab on. "topright”, "top”, and "right” are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal” or "vertical”. "bottomleft”, "bottom”, and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal” or "vertical”. "topleft"” causes the slab to be drawn on the top or the
left, and "bottomright” causes the slab to be drawn on the bottom or the right. "both"” draws
the slab mirrored on both sides (as in a violin plot).

* scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
=1, slabs that use the maximum range will just touch each other. Default is 0. 9 to leave some
space.

e justification: Justification of the interval relative to the slab, where @ indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to @, when side is "bottom"/"left"” justification
is set to 1, and when side is "both” justification is set to 0.5.

stat_interval 71

datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with

datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval”

target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

xmin: Left end of the interval sub-geometry (if orientation = "horizontal”).
xmax: Right end of the interval sub-geometry (if orientation = "horizontal”).
ymin: Lower end of the interval sub-geometry (if orientation = "vertical”).

ymax: Upper end of the interval sub-geometry (if orientation = "vertical”).

Point-specific aesthetics

shape: Shape type used to draw the point sub-geometry.

Color aesthetics

colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

fill_ramp: (or fill_ramp) A secondary scale that modifies the fill scale to "ramp" to
another color. See scale_fill_ramp() for examples.

Line aesthetics

size: Width of the outline around the slab (if visible). Also determines the width of the line
used to draw the interval and the size of the point, but raw size values are transformed ac-
cording to the interval_size_domain, interval_size_range, and fatten_point param-
eters of the geom (see above). Use the slab_size, interval_size, or point_size aesthetics
(below) to set sub-geometry line widths separately (note that when size is set directly using
the override aesthetics, interval and point sizes are not affected by interval_size_domain,
interval_size_range, and fatten_point).

stroke: Width of the outline around the point sub-geometry.

linetype: Type of line (e.g., "solid", "dashed”, etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color/line override aesthetics

slab_fill: Override for fill: the fill color of the slab.
slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

slab_alpha: Override for alpha: the opacity of the slab.

72 stat_interval

* slab_size: Override for size: the width of the outline of the slab.
* slab_linetype: Override for linetype: the line type of the outline of the slab.
Interval-specific color/line override aesthetics
e interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.
* interval_alpha: Override for alpha: the opacity of the interval.
e interval_size: Override for size: the line width of the interval.

* interval_linetype: Override for linetype: the line type of the interval.
Point-specific color/line override aesthetics

e point_fill: Override for fill: the fill color of the point.
* point_colour: (or point_color) Override for colour/color: the outline color of the point.
* point_alpha: Override for alpha: the opacity of the point.

* point_size: Override for size: the size of the point.
Other aesthetics (these work as in standard geoms)

e width
* height
e group
See examples of some of these aesthetics in action in vignette(”slabinterval”). Learn more

about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs”).

See Also

See geom_interval() for the geom versions, intended for use on points and intervals that have
already been summarized using a point_interval() function. See stat_pointinterval() fora
similar stat intended for point summaries and intervals. See stat_sample_slabinterval() for a
variety of other stats that combine intervals with densities and CDFs. See geom_slabinterval()
for the geom that these geoms wrap. All parameters of that geom are available to these geoms.

Examples

library(dplyr)
library(ggplot2)

theme_set (theme_ggdist())
data(RankCorr_u_tau, package = "ggdist")
RankCorr_u_tau %>%

group_by (i) %>%

ggplot(aes(y = factor(i), x = u_tau)) +
stat_interval() +

stat_lineribbon

scale_color_brewer()

RankCorr_u_tau %>%

group_by (i) %>%

ggplot(aes(x = factor(i), y = u_tau)) +

stat_interval() +
scale_color_brewer()

73

stat_lineribbon

Line + multiple probability ribbon plots (ggplot stat)

Description

A combination of stat_slabinterval() and geom_lineribbon() with sensible defaults. While
geom_lineribbon is intended for use on data frames that have already been summarized using
a point_interval() function, stat_lineribbon is intended for use directly on data frames of
draws, and will perform the summarization using a point_interval () function; stat_dist_lineribbon
is intended for use on analytical distributions through the dist, arg1, ... arg9, and args aesthetics.

Usage

stat_lineribbon(

)

mapping = NULL,

data = NULL,
geom = "lineribbon”,
position = "identity"”,

interval_function = NULL,
interval_args = list(),
point_interval = median_qi,
.width = c(0.5, 0.8, 0.95),
na.rm = FALSE,

show.legend = NA,
inherit.aes = TRUE,

.prob,

fun.data,

fun.args

stat_dist_lineribbon(

mapping = NULL,

data = NULL,

geom = "lineribbon”,
position = "identity”,

n = 501,
.width = c(0.5, 0.8, 0.95),

74 stat_lineribbon

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

Arguments

mapping Set of aesthetic mappings created by aes () or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Use to override the default connection between geom_lineribbon and stat_lineribbon.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

Other arguments passed to layer (). They may also be arguments to the paired
geom (e.g., geom_pointinterval())

interval_function
Custom function for generating intervals (for most common use cases the point_interval
argument will be easier to use). This function takes a data frame of aesthetics
and a .width parameter (a vector of interval widths), and returns a data frame
with columns .width (from the .width vector), .value (point summary) and
.lower and .upper (endpoints of the intervals, given the .width). Output will
be converted to the appropriate x- or y-based aesthetics depending on the value
of orientation. If interval_function is NULL, point_interval is used in-
stead.

interval_args Additional arguments passed to interval_function or point_interval.

point_interval A function from the point_interval() family (e.g., median_qi, mean_qi,
etc). This function should take in a vector of value, and should obey the .width
and . simple_names parameters of point_interval() functions, such that when
given a vector with . simple_names = TRUE should return a data frame with vari-
ables .value, .lower, .upper, and .width. Output will be converted to the
appropriate x- or y-based aesthetics depending on the value of orientation.
See the point_interval() family of functions for more information.

.width The .width argument passed to interval_function or point_interval.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show. legend Should this layer be included in the legends? NA, the default, includes if any
aesthetics are mapped. FALSE never includes, and TRUE always includes.

stat_pointinterval

inherit.aes

.prob
fun.data
fun.args

n

Value

75

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Deprecated. Use .width instead.
Deprecated. Use point_interval or interval_function instead.
Deprecated. Use interval_args instead.

Number of points at which to evaluate slab_function

A ggplot2::Stat representing a combined line+uncertainty ribbon geometry which can be added to

a ggplot() object.

See Also

See geom_lineribbon() for the geom version, intended for use on points and intervals that have
already been summarized using a point_interval() function. See stat_pointinterval() fora
similar stat intended for point summaries and intervals.

Examples

library(dplyr)
library(ggplot2)

library(distributional)

tibble(x = 1:10) %>%
group_by_all() %>%
do(tibble(y = rnorm(100, .3%$x))) %>%
ggplot(aes(x = x, y = y)) +
stat_lineribbon() +
scale_fill_brewer()

tibble(
x = 1:10,

sd = seq(1, 3, length.out = 10)

) %%

ggplot(aes(x = x, dist = dist_normal(x, sd))) +
stat_dist_lineribbon() +
scale_fill_brewer()

stat_pointinterval Point summary + multiple uncertainty interval plots (ggplot stat)

76 stat_pointinterval

Description

A combination of stat_sample_slabinterval() and geom_slabinterval() with sensible de-
faults. While the corresponding geoms are intended for use on data frames that have already been
summarized using a point_interval() function, these stats are intended for use directly on data
frames of draws, and will perform the summarization using a point_interval() function.

Usage

stat_pointinterval(
mapping = NULL,

data = NULL,
geom = "pointinterval”,
position = "identity"”,

orientation = NA,
interval_function = NULL,
interval_args = list(),
point_interval = median_qi,
.width = c(0.66, 0.95),
show_slab = FALSE,

na.rm = FALSE,

show.legend = c(size = FALSE),
inherit.aes = TRUE,

.prob,
fun.data,
fun.args
)
Arguments
mapping Set of aesthetic mappings created by aes () or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.
data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data. frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x,10)).
geom Use to override the default connection between stat_slabinterval and geom_slabinterval()
position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.

Other arguments passed to layer (). They may also be arguments to the paired
geom (e.g., geom_pointinterval())

stat_pointinterval

orientation

77

Whether this geom is drawn horizontally ("horizontal") or vertically ("vertical”).
The default, NA, automatically detects the orientation based on how the aesthetics
are assigned, and should generally do an okay job at this. When horizontal (resp.
vertical), the geom uses the y (resp. x) aesthetic to identify different groups,
then for each group uses the x (resp. y) aesthetic and the thickness aesthetic
to draw a function as an slab, and draws points and intervals horizontally (resp.
vertically) using the xmin, x, and xmax (resp. ymin, y, and ymax) aesthetics.
For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical” and "y" as an alias for "horizontal”
(tidybayes had an orientation parameter before ggplot did, and I think the
tidybayes naming scheme is more intuitive: "x" and "y" are not orientations
and their mapping to orientations is, in my opinion, backwards; but the base

ggplot naming scheme is allowed for compatibility).

interval_function

interval_args

Custom function for generating intervals (for most common use cases the point_interval
argument will be easier to use). This function takes a data frame of aesthetics

and a .width parameter (a vector of interval widths), and returns a data frame

with columns .width (from the .width vector), .value (point summary) and

.lower and .upper (endpoints of the intervals, given the .width). Output will

be converted to the appropriate x- or y-based aesthetics depending on the value

of orientation. If interval_function is NULL, point_interval is used in-

stead.

Additional arguments passed to interval_function or point_interval.

point_interval A function from the point_interval() family (e.g., median_qi, mean_qi,

.width
show_slab

na.rm

show. legend

inherit.aes

.prob
fun.data

fun.args

etc). This function should take in a vector of value, and should obey the .width
and . simple_names parameters of point_interval () functions, such that when
given a vector with . simple_names = TRUE should return a data frame with vari-
ables .value, .lower, .upper, and .width. Output will be converted to the
appropriate x- or y-based aesthetics depending on the value of orientation.
See the point_interval() family of functions for more information.

The .width argument passed to interval_function or point_interval.
Should the slab portion of the geom be drawn? Default TRUE.

If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

Should this layer be included in the legends? Defaultis c(size = FALSE), unlike
most geoms, to match its common use cases. FALSE hides all legends, TRUE
shows all legends, and NA shows only those that are mapped (the default for
most geoms).

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Deprecated. Use .width instead.
Deprecated. Use point_interval or interval_function instead.

Deprecated. Use interval_args instead.

78 stat_pointinterval

Value

A ggplot2::Stat representing a point+multiple uncertainty interval geometry which can be added to
a ggplot() object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the stat() or after_stat() functions:

* x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

e xmin or ymin: For intervals, the lower end of the interval from the interval function.

* xmax or ymax: For intervals, the upper end of the interval from the interval function.

e .width: For intervals, the interval width as a numeric value in [0, 1].

¢ level: For intervals, the interval width as an ordered factor.

» f: For slabs, the output values from the slab function (such as the PDF, CDF, or CCDF),
determined by slab_type.

* pdf: For slabs, the probability density function.
e cdf: For slabs, the cumulative distribution function.

* n: For slabs, the number of data points summarized into that slab.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.

These stats support the following aesthetics:

* x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal") except for stat_dist_ geometries (which use
only one of x or y at a time along with the dist aesthetic).

* y: y position of the geometry (when orientation = "horizontal”); or sample data to be sum-
marized (when orientation = "vertical") except for stat_dist_ geometries (which use
only one of x or y at a time along with the dist aesthetic).

In addition, in their default configuration (paired with geom_pointinterval()) the following aes-
thetics are supported by the underlying geom:

Slab-specific aesthetics

¢ thickness: The thickness of the slab at each x value (if orientation = "horizontal”) ory
value (if orientation = "vertical”) of the slab.

* side: Which side to place the slab on. "topright"”, "top”, and "right” are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal” or "vertical”. "bottomleft”, "bottom”, and "left” are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal” or "vertical”. "topleft” causes the slab to be drawn on the top or the
left, and "bottomright” causes the slab to be drawn on the bottom or the right. "both"” draws
the slab mirrored on both sides (as in a violin plot).

stat_pointinterval 79

scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
=1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space.

justification: Justification of the interval relative to the slab, where @ indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right"” justification is set to @, when side is "bottom”/"left"” justification

is set to 1, and when side is "both” justificationis set to 0.5.

datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval”
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

xmin: Left end of the interval sub-geometry (if orientation = "horizontal”).
xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

ymin: Lower end of the interval sub-geometry (if orientation = "vertical”).

» ymax: Upper end of the interval sub-geometry (if orientation = "vertical”).

Point-specific aesthetics

* shape: Shape type used to draw the point sub-geometry.

Color aesthetics

colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

fill_ramp: (or fill_ramp) A secondary scale that modifies the fill scale to "ramp" to
another color. See scale_fill_ramp() for examples.

Line aesthetics

e size: Width of the outline around the slab (if visible). Also determines the width of the line

used to draw the interval and the size of the point, but raw size values are transformed ac-
cording to the interval_size_domain, interval_size_range, and fatten_point param-
eters of the geom (see above). Use the slab_size, interval_size, or point_size aesthetics
(below) to set sub-geometry line widths separately (note that when size is set directly using
the override aesthetics, interval and point sizes are not affected by interval_size_domain,
interval_size_range, and fatten_point).

* stroke: Width of the outline around the point sub-geometry.

80

stat_pointinterval

linetype: Type of line (e.g., "solid", "dashed”, etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color/line override aesthetics

slab_fill: Override for fill: the fill color of the slab.

slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.
slab_alpha: Override for alpha: the opacity of the slab.

slab_size: Override for size: the width of the outline of the slab.

slab_linetype: Override for linetype: the line type of the outline of the slab.

Interval-specific color/line override aesthetics

interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

interval_alpha: Override for alpha: the opacity of the interval.
interval_size: Override for size: the line width of the interval.

interval_linetype: Override for linetype: the line type of the interval.

Point-specific color/line override aesthetics

point_fill: Override for fill: the fill color of the point.
point_colour: (or point_color) Override for colour/color: the outline color of the point.
point_alpha: Override for alpha: the opacity of the point.

point_size: Override for size: the size of the point.

Other aesthetics (these work as in standard geoms)

width
height
group

See examples of some of these aesthetics in action in vignette(”slabinterval”). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs”).

See Also

See geom_pointinterval() for the geom versions, intended for use on points and intervals that
have already been summarized using a point_interval() function. See stat_interval() for a
similar stat intended for intervals without point summaries. See stat_sample_slabinterval()
for a variety of other stats that combine intervals with densities and CDFs.

See geom_pointinterval() for the geom versions, intended for use on points and intervals that
have already been summarized using a point_interval () function. See stat_interval() for a
similar stat intended for intervals without point summaries. See stat_sample_slabinterval() for
a variety of other stats that combine intervals with densities and CDFs. See geom_slabinterval()
for the geom that these geoms wrap. All parameters of that geom are available to these geoms.

stat_sample_slabinterval 81

Examples

library(dplyr)
library(ggplot2)

data(RankCorr_u_tau, package = "ggdist")

RankCorr_u_tau %>%
ggplot(aes(y = factor(i), x = u_tau)) +
stat_pointinterval(.width = c(.66, .95))

RankCorr_u_tau %>%
ggplot(aes(x = factor(i), y = u_tau)) +
stat_pointinterval (.width = c(.66, .95))

stat_sample_slabinterval

Distribution + interval plots (eye plots, half-eye plots, CCDF barplots,
etc) for samples (ggplot stat)

Description
Stats for computing densities and CDFs + intervals from samples for use with geom_slabinterval().
Useful for creating eye plots, half-eye plots, CCDF bar plots etc.

Usage

stat_sample_slabinterval(
mapping = NULL,

data = NULL,
geom = "slabinterval”,
position = "identity",

slab_type = c("pdf"”, "cdf", "ccdf”, "histogram"),

adjust =1,
trim = TRUE,
breaks = "Sturges”,

outline_bars = FALSE,
orientation = NA,

limits = NULL,

n = 501,

interval_function = NULL,
interval_args = list(),
point_interval = median_qi,
.width = c(0.66, 0.95),

na.rm = FALSE,

show.legend = c(size = FALSE),

82

)

inherit.aes = TRUE

stat_halfeye(...)

stat_eye(

)

mapping = NULL,

data = NULL,

geom = "slabinterval”,
position = "identity"”,
show.legend = c(size =
inherit.aes = TRUE

FALSE),

stat_ccdfinterval(

)

stat_cdfinterval(..., slab_type = "cdf"”, normalize =

mapping = NULL,

data = NULL,

geom = "slabinterval”,
position = "identity"”,

slab_type = "ccdf",
normalize = "none",
show.legend = c(size =
inherit.aes = TRUE

FALSE),

stat_gradientinterval(

)

mapping = NULL,

data = NULL,

geom = "slabinterval”,
position = "identity"”,
show.legend = c(size =
inherit.aes = TRUE

FALSE, slab_alpha

stat_sample_slabinterval

nnoneu)

= FALSE),

stat_histinterval(..., slab_type = "histogram”)

stat_slab(

mapping = NULL,

data = NULL,

geom = "slab",
position = "identity"”,

L

show.legend = NA,

stat_sample_slabinterval 83

inherit.aes = TRUE

Arguments

mapping

data

geom

position

slab_type

adjust

trim

breaks

outline_bars

orientation

Set of aesthetic mappings created by aes () or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x,10)).

Use to override the default connection between stat_slabinterval and geom_slabinterval()

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

Other arguments passed to layer (). They may also be arguments to the paired
geom (e.g., geom_pointinterval())

The type of slab function to calculate: probability density (or mass) function
("pdf"), cumulative distribution function ("cdf"), complementary CDF ("ccdf"),
or histogram ("histogram”.

If slab_type is "pdf"”, bandwidth for the density estimator is adjusted by mul-
tiplying it by this value. See density() for more information.

If slab_type is "pdf”, should the density estimate be trimmed to the range of
the input data? Default TRUE.

If slab_type is "histogram"”, the breaks parameter that is passed to hist()
to determine where to put breaks in the histogram.

If slab_typeis "histogram”, outline_bars determines if outlines in between
the bars are drawn when the slab_color aesthetic is used. If FALSE (the de-
fault), the outline is drawn only along the tops of the bars; if TRUE, outlines in
between bars are also drawn.

Whether this geom is drawn horizontally ("horizontal") or vertically ("vertical”).
The default, NA, automatically detects the orientation based on how the aesthetics
are assigned, and should generally do an okay job at this. When horizontal (resp.
vertical), the geom uses the y (resp. x) aesthetic to identify different groups,
then for each group uses the x (resp. y) aesthetic and the thickness aesthetic
to draw a function as an slab, and draws points and intervals horizontally (resp.
vertically) using the xmin, x, and xmax (resp. ymin, y, and ymax) aesthetics.
For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical” and "y" as an alias for "horizontal”

(tidybayes had an orientation parameter before ggplot did, and I think the

84

limits

n

stat_sample_slabinterval

no,n

tidybayes naming scheme is more intuitive: "x" and "y" are not orientations
and their mapping to orientations is, in my opinion, backwards; but the base
ggplot naming scheme is allowed for compatibility).

Limits for slab_function, as a vector of length two. These limits are combined
with those computed by the 1imits_function as well as the limits defined by
the scales of the plot to determine the limits used to draw the slab functions:
these limits specify the maximal limits; i.e., if specified, the limits will not be
wider than these (but may be narrower). Use NA to leave a limit alone; e.g.
limits = c(@,NA) will ensure that the lower limit does not go below 0.

Number of points at which to evaluate slab_function

interval_function

interval_args

Custom function for generating intervals (for most common use cases the point_interval
argument will be easier to use). This function takes a data frame of aesthetics

and a .width parameter (a vector of interval widths), and returns a data frame

with columns .width (from the .width vector), .value (point summary) and

.lower and .upper (endpoints of the intervals, given the .width). Output will

be converted to the appropriate x- or y-based aesthetics depending on the value

of orientation. If interval_function is NULL, point_interval is used in-

stead.

Additional arguments passed to interval_function or point_interval.

point_interval A function from the point_interval() family (e.g., median_qi, mean_qi,

.width

na.rm

show. legend

inherit.aes

normalize

etc). This function should take in a vector of value, and should obey the .width
and . simple_names parameters of point_interval () functions, such that when
given a vector with . simple_names = TRUE should return a data frame with vari-
ables .value, .lower, .upper, and .width. Output will be converted to the
appropriate x- or y-based aesthetics depending on the value of orientation.
See the point_interval() family of functions for more information.

The .width argument passed to interval_function or point_interval.

If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

Should this layer be included in the legends? Defaultis c(size = FALSE), unlike
most geoms, to match its common use cases. FALSE hides all legends, TRUE
shows all legends, and NA shows only those that are mapped (the default for
most geoms).

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

How to normalize heights of functions input to the thickness aesthetic. If
"all” (the default), normalize so that the maximum height across all data is
1; if "panels”, normalize within panels so that the maximum height in each
panel is 1; if "xy", normalize within the x/y axis opposite the orientation of
this geom so that the maximum height at each value of the opposite axis is 1;
if "groups”, normalize within values of the opposite axis and within groups so
that the maximum height in each group is 1; if "none”, values are taken as is
with no normalization (this should probably only be used with functions whose
values are in [0,1], such as CDFs).

stat_sample_slabinterval 85

Details

A highly configurable stat for generating a variety of plots that combine a "slab" that summarizes
a sample plus an interval. Several "shortcut" stats are provided which combine multiple options to
create useful geoms, particularly eye plots (a combination of a violin plot and interval), half-eye
plots (a density plus interval), and CCDF bar plots (a complementary CDF plus interval). These
can be handy for visualizing posterior distributions in Bayesian inference, amongst other things.

The shortcut stat names follow the pattern stat_[name].

Stats include:

* stat_eye: Eye plots (violin + interval)

* stat_halfeye: Half-eye plots (density + interval)

* stat_ccdfinterval: CCDF bar plots (CCDF + interval)

* stat_cdfinterval: CDF bar plots (CDF + interval)

* stat_gradientinterval: Density gradient + interval plots
e stat_histinterval: Histogram + interval plots

* stat_pointinterval: Point + interval plots

e stat_interval: Interval plots

Value

A ggplot2::Stat representing a slab or combined slab+interval geometry which can be added to a
ggplot () object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the stat() or after_stat() functions:

* x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

e xmin or ymin: For intervals, the lower end of the interval from the interval function.

» xmax or ymax: For intervals, the upper end of the interval from the interval function.

e .width: For intervals, the interval width as a numeric value in [0, 1].

¢ level: For intervals, the interval width as an ordered factor.

» f: For slabs, the output values from the slab function (such as the PDF, CDF, or CCDF),
determined by slab_type.

* pdf: For slabs, the probability density function.
e cdf: For slabs, the cumulative distribution function.

* n: For slabs, the number of data points summarized into that slab.

86 stat_sample_slabinterval

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.

These stats support the following aesthetics:

* x: X position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal”) except for stat_dist_ geometries (which use
only one of x or y at a time along with the dist aesthetic).

* y: y position of the geometry (when orientation = "horizontal”); or sample data to be sum-
marized (when orientation = "vertical") except for stat_dist_ geometries (which use
only one of x or y at a time along with the dist aesthetic).

In addition, in their default configuration (paired with geom_slabinterval()) the following aes-
thetics are supported by the underlying geom:

Slab-specific aesthetics

e thickness: The thickness of the slab at each x value (if orientation = "horizontal”) ory
value (if orientation = "vertical”) of the slab.

* side: Which side to place the slab on. "topright”, "top”, and "right"” are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal” or "vertical”. "bottomleft”, "bottom”, and "left” are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal” or "vertical”. "topleft"” causes the slab to be drawn on the top or the
left, and "bottomright” causes the slab to be drawn on the bottom or the right. "both"” draws
the slab mirrored on both sides (as in a violin plot).

* scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
=1, slabs that use the maximum range will just touch each other. Default is 0. 9 to leave some
space.

e justification: Justification of the interval relative to the slab, where @ indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right"” justification is set to @, when side is "bottom”/"left"” justification
is set to 1, and when side is "both” justification is set to 0.5.

datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval”
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

* xmin: Left end of the interval sub-geometry (if orientation = "horizontal”).
» xmax: Right end of the interval sub-geometry (if orientation = "horizontal").
» ymin: Lower end of the interval sub-geometry (if orientation = "vertical”).

» ymax: Upper end of the interval sub-geometry (if orientation = "vertical”).

Point-specific aesthetics

stat_sample_slabinterval 87

* shape: Shape type used to draw the point sub-geometry.
Color aesthetics
* colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,

interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

e fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

* alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

e colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

e fill_ramp: (or fill_ramp) A secondary scale that modifies the fill scale to "ramp" to
another color. See scale_fill_ramp() for examples.

Line aesthetics

¢ size: Width of the outline around the slab (if visible). Also determines the width of the line
used to draw the interval and the size of the point, but raw size values are transformed ac-
cording to the interval_size_domain, interval_size_range, and fatten_point param-
eters of the geom (see above). Use the slab_size, interval_size, or point_size aesthetics
(below) to set sub-geometry line widths separately (note that when size is set directly using
the override aesthetics, interval and point sizes are not affected by interval_size_domain,
interval_size_range, and fatten_point).

* stroke: Width of the outline around the point sub-geometry.

e linetype: Type of line (e.g., "solid”, "dashed”, etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color/line override aesthetics

e slab_fill: Override for fill: the fill color of the slab.

e slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.
* slab_alpha: Override for alpha: the opacity of the slab.

* slab_size: Override for size: the width of the outline of the slab.

* slab_linetype: Override for linetype: the line type of the outline of the slab.
Interval-specific color/line override aesthetics

e interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

* interval_alpha: Override for alpha: the opacity of the interval.

e interval_size: Override for size: the line width of the interval.

e interval_linetype: Override for linetype: the line type of the interval.
Point-specific color/line override aesthetics

e point_fill: Override for fill: the fill color of the point.

88 stat_sample_slabinterval

e point_colour: (or point_color) Override for colour/color: the outline color of the point.
* point_alpha: Override for alpha: the opacity of the point.

* point_size: Override for size: the size of the point.
Other aesthetics (these work as in standard geoms)

e width
* height

* group

See examples of some of these aesthetics in action in vignette(”slabinterval”). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs”).

See Also

See geom_slabinterval() for more information on the geom these stats use by default and some
of the options they have. See stat_dist_slabinterval() for the versions of these stats that can
be used on analytical distributions. See vignette(”slabinterval”) for a variety of examples of
use.

Examples

library(dplyr)
library(ggplot2)

consider the following example data:
set.seed(1234)
df = data.frame(
group = c("a", "b", "c", "c", "c"),
value = rnorm(2500, mean = c(5, 7, 9, 9, 9), sd = c(1, 1.5, 1, 1, 1))
)

here are vertical eyes:

df %>%
ggplot(aes(x = group, y = value)) +
stat_eye()

note the sample size is not automatically incorporated into the
area of the densities in case one wishes to plot densities against
a reference (e.g. a prior generated by a stat_dist_... function).
But you may wish to account for sample size if using these geoms
for something other than visualizing posteriors; in which case
you can use stat(f*xn):
df %>%

ggplot(aes(x = group, y = value)) +

stat_eye(aes(thickness = stat(pdf*n)))

see vignette("slabinterval”) for many more examples.

student t

89

student_t

Scaled and shifted Student’s t distribution

Description

Density, distribution function, quantile function and random generation for the scaled and shifted
Student’s t distribution, parameterized by degrees of freedom (df), location (mu), and scale (sigma).

Usage

dstudent_t(x,
pstudent_t(q,
gstudent_t(p,

rstudent_t(n,

Arguments

X
df

mu

sigma

log

q
lower.tail
log.p

p

n

Value

df, mu = @, sigma = 1, lower.tail

df, mu = @, sigma = 1, log = FALSE)

df, mu = @, sigma = 1, lower.tail = TRUE, log.p = FALSE)

TRUE, log.p = FALSE)

df, mu = @, sigma = 1)

vector of quantiles.

degrees of freedom (> 0, maybe non-integer). df = Inf is allowed.

Location parameter (median)

Scale parameter

logical; if TRUE, probabilities p are given as log(p).

vector of quantiles.

logical; if TRUE (default), probabilities are P[X < x], otherwise, P[X > x].
logical; if TRUE, probabilities p are given as log(p).

vector of probabilities.

number of observations. If length(n) > 1, the length is taken to be the number
required.

* dstudent_t gives the density

* pstudent_t gives the cumulative distribution function (CDF)

* gstudent_t gives the quantile function (inverse CDF)

* rstudent_t generates random draws.

The length of the result is determined by n for rstudent_t, and is the maximum of the lengths of
the numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result. Only the first elements
of the logical arguments are used.

90 theme_ggdist

See Also

parse_dist() and parsing distribution specs and the stat_dist_slabinterval() family of stats
for visualizing them.

Examples

library(dplyr)
library(ggplot2)
library(forcats)

expand.grid(
df = ¢(3,5,10,30),
scale = c(1,1.5)
) %%
ggplot(aes(y = 0, dist = "student_t", argl = df, arg2 = 0, arg3 = scale, color = ordered(df))) +
stat_dist_slab(p_limits = c(.01, .99), fill = NA) +
scale_y_continuous(breaks = NULL) +
facet_grid(~ scale) +
labs(
title = "dstudent_t(x, df, @, sigma)”,
subtitle = "Scale (sigma)”,

y = NULL,
x = NULL
) +

theme_ggdist() +
theme(axis.title = element_text(hjust = 0))

theme_ggdist Simple, light ggplot2 theme for ggdist and tidybayes

Description

A simple, relatively minimalist ggplot2 theme, and some helper functions to go with it.

Usage
theme_ggdist ()

theme_tidybayes()
facet_title_horizontal()
axis_titles_bottom_left()
facet_title_left_horizontal()

facet_title_right_horizontal()

tidy-format-translators 91

Details

This is a relatively minimalist ggplot2 theme, intended to be used for making publication-ready
plots. It is currently based on ggplot2: : theme_light().

A word of warning: this theme may (and very likely will) change in the future as I tweak it to my
taste.

theme_ggdist() and theme_tidybayes() are aliases.

Value

A named list in the format of ggplot2: : theme ()

Author(s)
Matthew Kay

See Also

ggplot2::theme(), ggplot2::theme_set()

Examples

library(ggplot2)

theme_set (theme_ggdist())

tidy-format-translators

Translate between different tidy data frame formats for draws from
distributions

Description

These functions translate ggdist/tidybayes-style data frames to/from different data frame formats
(each format using a different naming scheme for its columns).

Usage
to_broom_names(data)
from_broom_names(data)
to_ggmecmc_names(data)

from_ggmcmc_names(data)

92 tidy-format-translators

Arguments

data A data frame to translate.

Details

Function prefixed with to_ translate from the ggdist/tidybayes format to another format, functions
prefixed with from_ translate from that format back to the ggdist/tidybayes format. Formats include:

to_broom_names () / from_broom_names():

* .variable <-> term

* .value <->estimate

e .prediction<-> .fitted
e .lower <->conf.low

e .upper <->conf.high
to_ggmemc_names () / from_ggmecmc_names():

e .chain <->Chain
e .iteration<->Iteration
e .variable <-> Parameter

e .value <->value

Value

A data frame with (possibly) new names in some columns, according to the translation scheme
described in Details.

Author(s)
Matthew Kay

Examples

library(dplyr)

data(RankCorr_u_tau, package = "ggdist")

df = RankCorr_u_tau %>%
dplyr::rename(.variable = i, .value = u_tau) %>%
group_by(.variable) %>%
median_qi(.value)

df

df %>%
to_broom_names ()

Index

* ggdist scales
scale_colour_ramp, 57
scales, 52

* manip
tidy-format-translators, 91

aes(), 13, 20, 26, 28, 34,61, 63, 68, 74, 76, 83

aes_Q), 13, 20, 26, 28, 34, 61, 68, 74, 76, 83

axis_titles_bottom_left (theme_ggdist),
90

bin_dots, 3

bin_dots(), 11

borders(), 15, 21, 26, 29, 36, 62, 69, 75,77
84

cdf (), 9
continuous_scale(), 58
coord_cartesian(), 55, 58
curve_interval, 5
cut_cdf_qi, 8

density(), 83

discrete_scale(), 58

dist_beta(), 63

dist_normal(), 63, 64

dlkjcorr_marginal (lkjcorr_marginal), 39
dnorm(), 63

dplyr::filter(), 42
dplyr::group_by(), 49

dstudent_t (student_t), 89

facet_title_horizontal (theme_ggdist),
90
facet_title_left_horizontal
(theme_ggdist), 90
facet_title_right_horizontal
(theme_ggdist), 90
fda::fbplot(), 6
find_dotplot_binwidth, 10
find_dotplot_binwidth(), 5

93

fortify(), 13, 20, 26, 28, 34, 61, 68, 74, 76,
83

from_broom_names
(tidy-format-translators), 91

from_ggmcmc_names
(tidy-format-translators), 91

geom_dotplot(), 16

geom_dots (geom_dotsinterval), 11

geom_dots(), 36

geom_dotsinterval, 11

geom_dotsinterval(), 5, 11, 16, 56

geom_interval, 20

geom_interval(), 24, 32, 36, 70, 72

geom_line(), 25, 27

geom_linerange(), 22

geom_lineribbon, 25

geom_lineribbon(), 3, 39,57, 73,75

geom_pointinterval, 27

geom_pointinterval(), 27, 36, 61, 68, 74,
76,78, 80, 83

geom_pointrange(), 30

geom_ribbon(), 25, 27

geom_slab (geom_slabinterval), 33

geom_slabinterval, 13, 20, 28, 33

geom_slabinterval(), 3, 11, 15-17, 19, 20,
22-24,27,30-32, 37,52, 55, 57, 59,
61,64-68,71,72,76,79-81, 83, 86,
88

ggdist (ggdist-package), 3

ggdist-package, 3

ggplot(), 13, 16, 20, 22, 26-28, 30, 34, 36,

56, 58,61, 63,68, 69, 74-76, 78, 83,

85

:Geom, 16, 22, 27, 30, 36

:Scale, 56, 58

:Stat, 16, 63,69, 75, 78, 85

:theme(), 91

:theme_light(), 91

:theme_set(), 91

ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:
ggplot2:

94

grob, 10

group_by(), 6, 48
guide_colorbar?2 (scales), 52
guide_colourbar?2 (scales), 52

hdci (point_interval), 45
hdi (point_interval), 45
hdi(), 48
HDInterval::hdi(), 49
hist(), 83

lambda, 55, 58
layer(), 26, 34,61, 68, 74, 76, 83
lkjcorr_marginal, 39
lkjcorr_marginal (), 41, 42

make.names(), 44
marginalize_lkjcorr, 41
marginalize_lkjcorr(), 41
mean(), 48

mean_hdci (point_interval), 45
mean_hdi (point_interval), 45
mean_qgi (point_interval), 45
mean_qi(), 22, 30

median(), 48

median_hdci (point_interval), 45
median_hdi (point_interval), 45
median_qi (point_interval), 45
median_qi(), 22, 30

Mode (point_interval), 45
Mode (), 48

mode_hdci (point_interval), 45
mode_hdi (point_interval), 45
mode_hdi (), 22, 30

mode_qi (point_interval), 45

ordered, 9

parse_dist, 43

parse_dist(), 41, 42, 63, 90

plkjcorr_marginal (lkjcorr_marginal), 39

pnorm(), 9, 63

point_interval, 45

point_interval(), 16, 20, 25, 27, 67, 69,
72-77, 80, 84

position_dodgejust, 50

pstudent_t (student_t), 89

gi (point_interval), 45
i), 48

INDEX

glkjcorr_marginal (lkjcorr_marginal), 39
gnorm(), 63
gstudent_t (student_t), 89

r_dist_name (parse_dist), 43
rlang::eval_tidy(), 48
rlkjcorr_marginal (1kjcorr_marginal), 39
rstudent_t (student_t), 89

scale_alpha_continuous(), 55
scale_color_continuous(), 56
scale_color_discrete(), 55, 56
scale_color_ramp (scale_colour_ramp), 57
scale_color_ramp_continuous
(scale_colour_ramp), 57
scale_color_ramp_discrete
(scale_colour_ramp), 57
scale_colour_ramp, 56, 57
scale_colour_ramp_continuous
(scale_colour_ramp), 57
scale_colour_ramp_discrete
(scale_colour_ramp), 57
scale_fill_ramp (scale_colour_ramp), 57
scale_fill_ramp_continuous
(scale_colour_ramp), 57
scale_fill_ramp_discrete
(scale_colour_ramp), 57
scale_interval_alpha_continuous
(scales), 52
scale_interval_alpha_discrete (scales),
52
scale_interval_color_continuous
(scales), 52
scale_interval_color_discrete (scales),
52
scale_interval_colour_continuous
(scales), 52
scale_interval_colour_discrete
(scales), 52
scale_interval_linetype_continuous
(scales), 52
scale_interval_linetype_discrete
(scales), 52
scale_interval_size_continuous
(scales), 52
scale_interval_size_discrete (scales),
52
scale_point_alpha_continuous (scales),
52

INDEX

scale_point_alpha_discrete (scales), 52
scale_point_color_continuous (scales),
52
scale_point_color_discrete (scales), 52
scale_point_colour_continuous (scales),
52
scale_point_colour_discrete (scales), 52
scale_point_fill_continuous (scales), 52
scale_point_fill_discrete (scales), 52
scale_point_size_continuous (scales), 52
scale_point_size_continuous(), 14, 21,
29, 35
scale_point_size_discrete (scales), 52
scale_point_size_discrete(), 14, 21, 29,
35
scale_size_continuous(), 14, 22, 29, 35,
36
scale_slab_alpha_continuous (scales), 52
scale_slab_alpha_discrete (scales), 52
scale_slab_color_continuous (scales), 52
scale_slab_color_discrete (scales), 52
scale_slab_colour_continuous (scales),
52
scale_slab_colour_discrete (scales), 52
scale_slab_fill_continuous (scales), 52
scale_slab_fill_discrete (scales), 52
scale_slab_linetype_continuous
(scales), 52
scale_slab_linetype_discrete (scales),
52
scale_slab_shape_continuous (scales), 52
scale_slab_shape_discrete (scales), 52
scale_slab_size_continuous (scales), 52
scale_slab_size_discrete (scales), 52
scales, 14, 18, 22, 24, 29, 32, 35, 39, 52, 58,
66, 72, 80, 88
scales: :percent_format(), 9
stat_ccdfinterval
(stat_sample_slabinterval), 81
stat_cdfinterval
(stat_sample_slabinterval), 81
stat_dist_ccdfinterval
(stat_dist_slabinterval), 59
stat_dist_cdfinterval
(stat_dist_slabinterval), 59
stat_dist_dots (geom_dotsinterval), 11
stat_dist_dotsinterval
(geom_dotsinterval), 11

95

stat_dist_eye (stat_dist_slabinterval),
59
stat_dist_gradientinterval
(stat_dist_slabinterval), 59
stat_dist_halfeye
(stat_dist_slabinterval), 59
stat_dist_halfeye(), 8
stat_dist_interval
(stat_dist_slabinterval), 59
stat_dist_lineribbon (stat_lineribbon),
73
stat_dist_lineribbon(), 3
stat_dist_pointinterval
(stat_dist_slabinterval), 59
stat_dist_slab
(stat_dist_slabinterval), 59
stat_dist_slabinterval, 59
stat_dist_slabinterval(), 3, 9, 19, 36, 39,
4143, 45, 88, 90
stat_dots (geom_dotsinterval), 11
stat_dots(), 36
stat_dotsinterval (geom_dotsinterval),
11
stat_eye (stat_sample_slabinterval), 81
stat_eye(), 49
stat_gradientinterval
(stat_sample_slabinterval), 81
stat_gradientinterval(), /4, 21, 28, 35,
55
stat_halfeye
(stat_sample_slabinterval), 81
stat_halfeye(), 8, 39, 49
stat_histinterval
(stat_sample_slabinterval), 81
stat_interval, 67
stat_interval(), 24, 36, 80
stat_lineribbon, 73
stat_lineribbon(), 3,27
stat_pointinterval, 75
stat_pointinterval(), 32, 36, 72,75
stat_sample_slabinterval, 81
stat_sample_slabinterval(), 9, 19, 24, 32,
36, 39, 66, 67,72, 76, 80
stat_slab (stat_sample_slabinterval), 81
stat_slabinterval(), 3, 11,73
stat_summary(), 49
student_t, 89

theme_ggdist, 90

96

theme_tidybayes (theme_ggdist), 90
tidy-format-translators, 91
to_broom_names
(tidy-format-translators), 91
to_ggmemc_names
(tidy-format-translators), 91

unit, 715

INDEX

	ggdist-package
	bin_dots
	curve_interval
	cut_cdf_qi
	find_dotplot_binwidth
	geom_dotsinterval
	geom_interval
	geom_lineribbon
	geom_pointinterval
	geom_slabinterval
	lkjcorr_marginal
	marginalize_lkjcorr
	parse_dist
	point_interval
	position_dodgejust
	scales
	scale_colour_ramp
	stat_dist_slabinterval
	stat_interval
	stat_lineribbon
	stat_pointinterval
	stat_sample_slabinterval
	student_t
	theme_ggdist
	tidy-format-translators
	Index

