gcplyr: Manipulate and Analyze Growth Curve Data

Easy import, manipulation, and model-free analysis of microbial growth curve data, as commonly output by plate readers. Tools for reshaping common plate reader outputs into 'tidy' formats and merging them with design information, making data easy to work with using 'gcplyr' and other packages. Also streamlines common growth curve processing steps, like smoothing and calculating derivatives, and facilitates model-free characterization and analysis of growth data. See methods at <https://mikeblazanin.github.io/gcplyr/>.

Version: 1.6.0
Depends: R (≥ 2.10)
Imports: dplyr, stats, tidyr, tools, utils
Suggests: cowplot, ggplot2, knitr, lubridate, mgcv, readxl, rmarkdown, testthat (≥ 3.0.0), xlsx
Published: 2023-09-13
Author: Mike Blazanin ORCID iD [aut, cre]
Maintainer: Mike Blazanin <mikeblazanin at gmail.com>
License: MIT + file LICENSE
URL: https://mikeblazanin.github.io/gcplyr/, https://github.com/mikeblazanin/gcplyr/
NeedsCompilation: no
Citation: gcplyr citation info
Materials: README NEWS
CRAN checks: gcplyr results


Reference manual: gcplyr.pdf
Vignettes: Analyzing data
Statistics, merging other data, and other resources
Introduction to using gcplyr
Importing and transforming data
Incorporating design information
Dealing with noise
Pre-processing and plotting data
Processing data


Package source: gcplyr_1.6.0.tar.gz
Windows binaries: r-devel: gcplyr_1.6.0.zip, r-release: gcplyr_1.6.0.zip, r-oldrel: gcplyr_1.6.0.zip
macOS binaries: r-release (arm64): gcplyr_1.6.0.tgz, r-oldrel (arm64): gcplyr_1.6.0.tgz, r-release (x86_64): gcplyr_1.6.0.tgz, r-oldrel (x86_64): gcplyr_1.6.0.tgz
Old sources: gcplyr archive


Please use the canonical form https://CRAN.R-project.org/package=gcplyr to link to this page.