
Package ‘distr6’
October 5, 2021

Title The Complete R6 Probability Distributions Interface

Version 1.6.2

Description An R6 object oriented distributions package. Unified
interface for 42 probability distributions and 11 kernels including
functionality for multiple scientific types. Additionally
functionality for composite distributions and numerical imputation.
Design patterns including wrappers and decorators are described in
Gamma et al. (1994, ISBN:0-201-63361-2). For quick reference of
probability distributions including d/p/q/r functions and results we
refer to McLaughlin, M. P. (2001). Additionally Devroye (1986,
ISBN:0-387-96305-7) for sampling the Dirichlet distribution, Gentle
(2009) <doi:10.1007/978-0-387-98144-4> for sampling the Multivariate
Normal distribution and Michael et al. (1976) <doi:10.2307/2683801>
for sampling the Wald distribution.

License MIT + file LICENSE

URL https://alan-turing-institute.github.io/distr6/,

https://github.com/alan-turing-institute/distr6/

BugReports https://github.com/alan-turing-institute/distr6/issues

Imports checkmate, data.table, param6 (>= 0.2.2), R6, Rcpp, set6 (>=
0.2.3), stats

Suggests actuar, cubature, extraDistr, GoFKernel, knitr, magrittr,
plotly, pracma, R62S3 (>= 1.4.0), rmarkdown, testthat

LinkingTo Rcpp

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.1.1

SystemRequirements C++11

Collate 'helpers.R' 'distr6_globals.R' 'Distribution.R'
'DistributionDecorator.R'
'DistributionDecorator_CoreStatistics.R'

1

https://doi.org/10.1007/978-0-387-98144-4
https://doi.org/10.2307/2683801
https://alan-turing-institute.github.io/distr6/
https://github.com/alan-turing-institute/distr6/
https://github.com/alan-turing-institute/distr6/issues

2

'DistributionDecorator_ExoticStatistics.R'
'DistributionDecorator_FunctionImputation.R'
'Distribution_Kernel.R' 'Distribution_SDistribution.R'
'Kernel_Cosine.R' 'Kernel_Epanechnikov.R' 'Kernel_Logistic.R'
'Kernel_Normal.R' 'Kernel_Quartic.R' 'Kernel_Sigmoid.R'
'Kernel_Silverman.R' 'Kernel_Triangular.R' 'Kernel_Tricube.R'
'Kernel_Triweight.R' 'Kernel_Uniform.R' 'RcppExports.R'
'SDistribution_Arcsine.R' 'SDistribution_Bernoulli.R'
'SDistribution_Beta.R' 'SDistribution_BetaNoncentral.R'
'SDistribution_Binomial.R' 'SDistribution_Categorical.R'
'SDistribution_Cauchy.R' 'SDistribution_ChiSquared.R'
'SDistribution_ChiSquaredNoncentral.R'
'SDistribution_Degenerate.R' 'SDistribution_Dirichlet.R'
'SDistribution_DiscreteUniform.R' 'SDistribution_Empirical.R'
'SDistribution_EmpiricalMultivariate.R'
'SDistribution_Erlang.R' 'SDistribution_Exponential.R'
'SDistribution_FDistribution.R'
'SDistribution_FDistributionNoncentral.R'
'SDistribution_Frechet.R' 'SDistribution_Gamma.R'
'SDistribution_Geometric.R' 'SDistribution_Gompertz.R'
'SDistribution_Gumbel.R' 'SDistribution_Hypergeometric.R'
'SDistribution_InverseGamma.R' 'SDistribution_Laplace.R'
'SDistribution_Logarithmic.R' 'SDistribution_Logistic.R'
'SDistribution_Loglogistic.R' 'SDistribution_Lognormal.R'
'SDistribution_Multinomial.R'
'SDistribution_MultivariateNormal.R'
'SDistribution_NegBinomal.R' 'SDistribution_Normal.R'
'SDistribution_Pareto.R' 'SDistribution_Poisson.R'
'SDistribution_Rayleigh.R' 'SDistribution_ShiftedLoglogistic.R'
'SDistribution_StudentT.R' 'SDistribution_StudentTNoncentral.R'
'SDistribution_Triangular.R' 'SDistribution_Uniform.R'
'SDistribution_Wald.R' 'SDistribution_Weibull.R'
'SDistribution_WeightedDiscrete.R' 'Wrapper.R'
'Wrapper_Convolution.R' 'Wrapper_HuberizedDistribution.R'
'Wrapper_MixtureDistribution.R' 'Wrapper_ProductDistribution.R'
'Wrapper_Scale.R' 'Wrapper_TruncatedDistribution.R'
'Wrapper_VectorDistribution.R' 'as.Distribution.R'
'assertions.R' 'c.Distribution.R' 'decomposeMixture.R'
'decorate.R' 'distr6-deprecated.R' 'distr6-package.R'
'distr6.news.R' 'distrSimulate.R' 'exkurtosisType.R'
'generalPNorm.R' 'getParameterSet.R' 'helpers_pdq.R'
'helpers_wrappers.R' 'isPdqr.R' 'lines_continuous.R'
'lines_discrete.R' 'lines.R' 'listDecorators.R'
'listDistributions.R' 'listKernels.R' 'listWrappers.R'
'makeUniqueDistributions.R' 'measures.R' 'mixturiseVector.R'
'plot_continuous.R' 'plot_discrete.R' 'plot_distribution.R'
'plot_multivariate.R' 'plot_vectordistribution.R' 'qqplot.R'
'rep.Distribution.R' 'sets.R' 'simulateEmpiricalDistribution.R'

R topics documented: 3

'skewType.R' 'sugar.R' 'zzz.R'

NeedsCompilation yes

Author Raphael Sonabend [aut, cre] (<https://orcid.org/0000-0001-9225-4654>),
Franz Kiraly [aut],
Peter Ruckdeschel [ctb] (Author of distr),
Matthias Kohl [ctb] (Author of distr),
Nurul Ain Toha [ctb],
Shen Chen [ctb],
Jordan Deenichin [ctb],
Chengyang Gao [ctb],
Chloe Zhaoyuan Gu [ctb],
Yunjie He [ctb],
Xiaowen Huang [ctb],
Shuhan Liu [ctb],
Runlong Yu [ctb],
Chijing Zeng [ctb],
Qian Zhou [ctb]

Maintainer Raphael Sonabend <raphaelsonabend@gmail.com>

Repository CRAN

Date/Publication 2021-10-05 10:50:01 UTC

R topics documented:
distr6-package . 6
Arcsine . 7
as.Distribution . 11
as.MixtureDistribution . 12
as.ProductDistribution . 12
as.VectorDistribution . 13
Bernoulli . 13
Beta . 18
BetaNoncentral . 22
Binomial . 24
c.Distribution . 28
Categorical . 29
Cauchy . 34
ChiSquared . 39
ChiSquaredNoncentral . 43
Convolution . 47
CoreStatistics . 48
Cosine . 52
decorate . 54
Degenerate . 55
Dirichlet . 59
DiscreteUniform . 62
distr6News . 67

https://orcid.org/0000-0001-9225-4654

4 R topics documented:

Distribution . 67
DistributionDecorator . 77
DistributionWrapper . 78
distrSimulate . 80
dstr . 81
Empirical . 82
EmpiricalMV . 87
Epanechnikov . 90
Erlang . 92
exkurtosisType . 96
ExoticStatistics . 97
Exponential . 101
FDistribution . 106
FDistributionNoncentral . 110
Frechet . 113
FunctionImputation . 117
Gamma . 118
generalPNorm . 123
Geometric . 124
Gompertz . 129
Gumbel . 131
huberize . 136
HuberizedDistribution . 136
Hypergeometric . 138
InverseGamma . 142
Kernel . 146
Laplace . 148
length.VectorDistribution . 153
lines.Distribution . 153
listDecorators . 154
listDistributions . 155
listKernels . 156
listWrappers . 156
Logarithmic . 157
Logistic . 161
LogisticKernel . 165
Loglogistic . 167
Lognormal . 171
makeUniqueDistributions . 176
MixtureDistribution . 177
mixturiseVector . 182
Multinomial . 183
MultivariateNormal . 188
NegativeBinomial . 192
Normal . 197
NormalKernel . 201
Pareto . 203
plot.Distribution . 207

R topics documented: 5

plot.VectorDistribution . 209
Poisson . 210
ProductDistribution . 214
qqplot . 220
Quartic . 221
Rayleigh . 223
rep.Distribution . 227
SDistribution . 227
ShiftedLoglogistic . 228
Sigmoid . 232
Silverman . 234
simulateEmpiricalDistribution . 236
skewType . 236
StudentT . 237
StudentTNoncentral . 241
testContinuous . 244
testDiscrete . 245
testDistribution . 245
testDistributionList . 246
testLeptokurtic . 247
testMatrixvariate . 248
testMesokurtic . 249
testMixture . 250
testMultivariate . 250
testNegativeSkew . 251
testNoSkew . 252
testParameterSet . 253
testParameterSetList . 254
testPlatykurtic . 255
testPositiveSkew . 256
testSymmetric . 257
testUnivariate . 257
Triangular . 258
TriangularKernel . 264
Tricube . 265
Triweight . 267
truncate . 269
TruncatedDistribution . 269
Uniform . 271
UniformKernel . 276
VectorDistribution . 277
Wald . 286
Weibull . 290
WeightedDiscrete . 294
[.VectorDistribution . 299

Index 300

6 distr6-package

distr6-package distr6: Object Oriented Distributions in R

Description

distr6 is an object oriented (OO) interface, primarily used for interacting with probability distribu-
tions in R. Additionally distr6 includes functionality for composite distributions, a symbolic rep-
resentation for mathematical sets and intervals, basic methods for common kernels and numeric
methods for distribution analysis. distr6 is the official R6 upgrade to the distr family of packages.

Details

The main features of distr6 are:

• Currently implements 45 probability distributions (and 11 Kernels) including all distributions
in the R stats package. Each distribution has (where possible) closed form analytic expressions
for basic statistical methods.

• Decorators that add further functionality to probability distributions including numeric results
for useful modelling functions such as p-norms and k-moments.

• Wrappers for composite distributions including convolutions, truncation, mixture distributions
and product distributions.

To learn more about distr6, start with the distr6 vignette:

vignette("distr6","distr6")

And for more advanced usage see the complete tutorials at

https://alan-turing-institute.github.io/distr6/index.html #nolint

Author(s)

Maintainer: Raphael Sonabend <raphaelsonabend@gmail.com> (ORCID)

Authors:

• Franz Kiraly <f.kiraly@ucl.ac.uk>

Other contributors:

• Peter Ruckdeschel <peter.ruckdeschel@uni-oldenburg.de> (Author of distr) [contribu-
tor]

• Matthias Kohl <Matthias.Kohl@stamats.de> (Author of distr) [contributor]

• Nurul Ain Toha <nurul.toha.15@ucl.ac.uk> [contributor]

• Shen Chen <seanchen9832@icloud.com> [contributor]

• Jordan Deenichin <d.deenichin@gmail.com> [contributor]

• Chengyang Gao <garoc371@gmail.com> [contributor]

• Chloe Zhaoyuan Gu <guzhaoyuan@outlook.com> [contributor]

https://alan-turing-institute.github.io/distr6/index.html
https://orcid.org/0000-0001-9225-4654

Arcsine 7

• Yunjie He <zcakebx@ucl.ac.uk> [contributor]

• Xiaowen Huang <hxw3678@gmail.com> [contributor]

• Shuhan Liu <Shuhan.liu.99@gmail.com> [contributor]

• Runlong Yu <edwinyurl@hotmail.com> [contributor]

• Chijing Zeng <britneyzenguk@gmail.com> [contributor]

• Qian Zhou <zcakqz1@ucl.ac.uk> [contributor]

See Also

Useful links:

• https://alan-turing-institute.github.io/distr6/

• https://github.com/alan-turing-institute/distr6/

• Report bugs at https://github.com/alan-turing-institute/distr6/issues

Arcsine Arcsine Distribution Class

Description

Mathematical and statistical functions for the Arcsine distribution, which is commonly used in the
study of random walks and as a special case of the Beta distribution.

Details

The Arcsine distribution parameterised with lower, a, and upper, b, limits is defined by the pdf,

f(x) = 1/(π
√

(x− a)(b− x))

for −∞ < a ≤ b <∞.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on [a, b].

Default Parameterisation

Arc(lower = 0, upper = 1)

Omitted Methods

N/A

https://alan-turing-institute.github.io/distr6/
https://github.com/alan-turing-institute/distr6/
https://github.com/alan-turing-institute/distr6/issues

8 Arcsine

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Arcsine

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:
• Arcsine$new()

• Arcsine$mean()

• Arcsine$mode()

• Arcsine$variance()

• Arcsine$skewness()

• Arcsine$kurtosis()

• Arcsine$entropy()

• Arcsine$pgf()

• Arcsine$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Arcsine$new(lower = NULL, upper = NULL, decorators = NULL)

Arguments:
lower (numeric(1))

Lower limit of the Distribution, defined on the Reals.
upper (numeric(1))

Upper limit of the Distribution, defined on the Reals.
decorators (character())

Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Arcsine 9

Usage:
Arcsine$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Arcsine$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Arcsine$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Arcsine$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Arcsine$kurtosis(excess = TRUE, ...)

Arguments:

10 Arcsine

excess (logical(1))
If TRUE (default) excess kurtosis returned.

... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Arcsine$entropy(base = 2, ...)

Arguments:

base (integer(1))
Base of the entropy logarithm, default = 2 (Shannon entropy)

... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Arcsine$pgf(z, ...)

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Arcsine$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other continuous distributions: BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared,
Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma,
Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

as.Distribution 11

Other univariate distributions: Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy,
ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential,
FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel,
Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

as.Distribution Coerce matrix to vector of WeightedDiscrete

Description

Coerces matrices to a VectorDistribution containing WeightedDiscrete distributions. Number of
distributions are the number of rows in the matrix, number of x points are number of columns in the
matrix.

Usage

as.Distribution(obj, fun, decorators = NULL)

S3 method for class 'matrix'
as.Distribution(obj, fun, decorators = NULL)

Arguments

obj matrix. Column names correspond to x in WeightedDiscrete, so this method
only works if all distributions (rows in the matrix) have the same points to be
evaluated on. Elements correspond to either the pdf or cdf of the distribution
(see below).

fun Either "pdf" or "cdf", passed to WeightedDiscrete and tells the constructor if
the elements in obj correspond to the pdf or cdf of the distribution.

decorators Passed to VectorDistribution.

Value

A VectorDistribution

Examples

pdf <- runif(200)
mat <- matrix(pdf, 20, 10)
mat <- t(apply(mat, 1, function(x) x / sum(x)))
colnames(mat) <- 1:10
as.Distribution(mat, fun = "pdf")

12 as.ProductDistribution

as.MixtureDistribution

Coercion to Mixture Distribution

Description

Helper functions to quickly convert compatible objects to a MixtureDistribution.

Usage

as.MixtureDistribution(object, weights = "uniform")

Arguments

object ProductDistribution or VectorDistribution

weights (character(1)|numeric())
Weights to use in the resulting mixture. If all distributions are weighted equally
then "uniform" provides a much faster implementation, otherwise a vector of
length equal to the number of wrapped distributions, this is automatically scaled
internally.

as.ProductDistribution

Coercion to Product Distribution

Description

Helper functions to quickly convert compatible objects to a ProductDistribution.

Usage

as.ProductDistribution(object)

Arguments

object MixtureDistribution or VectorDistribution

as.VectorDistribution 13

as.VectorDistribution Coercion to Vector Distribution

Description

Helper functions to quickly convert compatible objects to a VectorDistribution.

Usage

as.VectorDistribution(object)

Arguments

object MixtureDistribution or ProductDistribution

Bernoulli Bernoulli Distribution Class

Description

Mathematical and statistical functions for the Bernoulli distribution, which is commonly used to
model a two-outcome scenario.

Details

The Bernoulli distribution parameterised with probability of success, p, is defined by the pmf,

f(x) = p, if x = 1

f(x) = 1− p, if x = 0

for probability p.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on {0, 1}.

Default Parameterisation

Bern(prob = 0.5)

Omitted Methods

N/A

14 Bernoulli

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Bernoulli

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:
• Bernoulli$new()

• Bernoulli$mean()

• Bernoulli$mode()

• Bernoulli$median()

• Bernoulli$variance()

• Bernoulli$skewness()

• Bernoulli$kurtosis()

• Bernoulli$entropy()

• Bernoulli$mgf()

• Bernoulli$cf()

• Bernoulli$pgf()

• Bernoulli$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Bernoulli$new(prob = NULL, qprob = NULL, decorators = NULL)

Arguments:

prob (numeric(1))
Probability of success.

qprob (numeric(1))
Probability of failure. If provided then prob is ignored. qprob = 1 -prob.

decorators (character())
Decorators to add to the distribution during construction.

Bernoulli 15

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Bernoulli$mean(...)

Arguments:

... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Bernoulli$mode(which = "all")

Arguments:

which (character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method median(): Returns the median of the distribution. If an analytical expression is avail-
able returns distribution median, otherwise if symmetric returns self$mean, otherwise returns
self$quantile(0.5).

Usage:
Bernoulli$median()

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Bernoulli$variance(...)

Arguments:

... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Bernoulli$skewness(...)

Arguments:

16 Bernoulli

... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Bernoulli$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))

If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Bernoulli$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Bernoulli$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Bernoulli$cf(t, ...)

Bernoulli 17

Arguments:

t (integer(1))
t integer to evaluate function at.

... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:

Bernoulli$pgf(z, ...)

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:

Bernoulli$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other discrete distributions: Binomial, Categorical, Degenerate, DiscreteUniform, EmpiricalMV,
Empirical, Geometric, Hypergeometric, Logarithmic, Multinomial, NegativeBinomial, WeightedDiscrete

Other univariate distributions: Arcsine, BetaNoncentral, Beta, Binomial, Categorical, Cauchy,
ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential,
FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel,
Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

18 Beta

Beta Beta Distribution Class

Description

Mathematical and statistical functions for the Beta distribution, which is commonly used as the
prior in Bayesian modelling.

Details

The Beta distribution parameterised with two shape parameters, α, β, is defined by the pdf,

f(x) = (xα−1(1− x)β−1)/B(α, β)

for α, β > 0, where B is the Beta function.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on [0, 1].

Default Parameterisation

Beta(shape1 = 1, shape2 = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Beta

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Beta 19

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:
• Beta$new()

• Beta$mean()

• Beta$mode()

• Beta$variance()

• Beta$skewness()

• Beta$kurtosis()

• Beta$entropy()

• Beta$pgf()

• Beta$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Beta$new(shape1 = NULL, shape2 = NULL, decorators = NULL)

Arguments:
shape1 (numeric(1))

First shape parameter, shape1 > 0.
shape2 (numeric(1))

Second shape parameter, shape2 > 0.
decorators (character())

Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Beta$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Beta$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

20 Beta

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Beta$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Beta$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Beta$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))

If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Beta$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)

Beta 21

... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:

Beta$pgf(z, ...)

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:

Beta$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Cauchy, ChiSquaredNoncentral, ChiSquared,
Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma,
Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

22 BetaNoncentral

BetaNoncentral Noncentral Beta Distribution Class

Description

Mathematical and statistical functions for the Noncentral Beta distribution, which is commonly
used as the prior in Bayesian modelling.

Details

The Noncentral Beta distribution parameterised with two shape parameters, α, β, and location, λ,
is defined by the pdf,

f(x) = exp(−λ/2)

∞∑
r=0

((λ/2)r/r!)(xα+r−1(1− x)β−1)/B(α+ r, β)

for α, β > 0, λ ≥ 0, where B is the Beta function.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on [0, 1].

Default Parameterisation

BetaNC(shape1 = 1, shape2 = 1, location = 0)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> BetaNoncentral

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

BetaNoncentral 23

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

• BetaNoncentral$new()

• BetaNoncentral$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

BetaNoncentral$new(
shape1 = NULL,
shape2 = NULL,
location = NULL,
decorators = NULL

)

Arguments:

shape1 (numeric(1))
First shape parameter, shape1 > 0.

shape2 (numeric(1))
Second shape parameter, shape2 > 0.

location (numeric(1))
Location parameter, defined on the non-negative Reals.

decorators (character())
Decorators to add to the distribution during construction.

Method clone(): The objects of this class are cloneable with this method.

Usage:

BetaNoncentral$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Jordan Deenichin

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

24 Binomial

See Also

Other continuous distributions: Arcsine, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared,
Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma,
Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral,
ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral,
FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma,
Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto,
Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform,
Wald, Weibull, WeightedDiscrete

Binomial Binomial Distribution Class

Description

Mathematical and statistical functions for the Binomial distribution, which is commonly used to
model the number of successes out of a number of independent trials.

Details

The Binomial distribution parameterised with number of trials, n, and probability of success, p, is
defined by the pmf,

f(x) = C(n, x)px(1− p)n−x

for n = 0, 1, 2, . . . and probability p, where C(a, b) is the combination (or binomial coefficient)
function.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on 0, 1, ..., n.

Default Parameterisation

Binom(size = 10, prob = 0.5)

Omitted Methods

N/A

Binomial 25

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Binomial

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:
• Binomial$new()

• Binomial$mean()

• Binomial$mode()

• Binomial$variance()

• Binomial$skewness()

• Binomial$kurtosis()

• Binomial$entropy()

• Binomial$mgf()

• Binomial$cf()

• Binomial$pgf()

• Binomial$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Binomial$new(size = NULL, prob = NULL, qprob = NULL, decorators = NULL)

Arguments:
size (integer(1))

Number of trials, defined on the positive Naturals.
prob (numeric(1))

Probability of success.
qprob (numeric(1))

Probability of failure. If provided then prob is ignored. qprob = 1 -prob.
decorators (character())

Decorators to add to the distribution during construction.

26 Binomial

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Binomial$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Binomial$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Binomial$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Binomial$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Binomial 27

Usage:
Binomial$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))

If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Binomial$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Binomial$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Binomial$cf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

28 c.Distribution

Usage:
Binomial$pgf(z, ...)

Arguments:
z (integer(1))

z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Binomial$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other discrete distributions: Bernoulli, Categorical, Degenerate, DiscreteUniform, EmpiricalMV,
Empirical, Geometric, Hypergeometric, Logarithmic, Multinomial, NegativeBinomial, WeightedDiscrete

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Categorical, Cauchy,
ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential,
FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel,
Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

c.Distribution Combine Distributions into a VectorDistribution

Description

Helper function for quickly combining distributions into a VectorDistribution.

Usage

S3 method for class 'Distribution'
c(..., name = NULL, short_name = NULL, decorators = NULL)

Arguments

... distributions to be concatenated.
name, short_name, decorators

See VectorDistribution

Categorical 29

Value

A VectorDistribution

See Also

VectorDistribution

Examples

Construct and combine
c(Binomial$new(), Normal$new())

More complicated distributions
b <- truncate(Binomial$new(), 2, 6)
n <- huberize(Normal$new(), -1, 1)
c(b, n)

Concatenate VectorDistributions
v1 <- VectorDistribution$new(list(Binomial$new(), Normal$new()))
v2 <- VectorDistribution$new(

distribution = "Gamma",
params = data.table::data.table(shape = 1:2, rate = 1:2)

)
c(v1, v2)

Categorical Categorical Distribution Class

Description

Mathematical and statistical functions for the Categorical distribution, which is commonly used in
classification supervised learning.

Details

The Categorical distribution parameterised with a given support set, x1, ..., xk, and respective prob-
abilities, p1, ..., pk, is defined by the pmf,

f(xi) = pi

for pi, i = 1, . . . , k;
∑
pi = 1.

Sampling from this distribution is performed with the sample function with the elements given as
the support set and the probabilities from the probs parameter. The cdf and quantile assumes that
the elements are supplied in an indexed order (otherwise the results are meaningless).

The number of points in the distribution cannot be changed after construction.

Value

Returns an R6 object inheriting from class SDistribution.

30 Categorical

Distribution support

The distribution is supported on x1, ..., xk.

Default Parameterisation

Cat(elements = 1, probs = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Categorical

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:
• Categorical$new()

• Categorical$mean()

• Categorical$mode()

• Categorical$variance()

• Categorical$skewness()

• Categorical$kurtosis()

• Categorical$entropy()

• Categorical$mgf()

• Categorical$cf()

• Categorical$pgf()

• Categorical$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Categorical$new(elements = NULL, probs = NULL, decorators = NULL)

Categorical 31

Arguments:
elements list()

Categories in the distribution, see examples.
probs numeric()

Probabilities of respective categories occurring.
decorators (character())

Decorators to add to the distribution during construction.

Examples:
Note probabilities are automatically normalised (if not vectorised)
x <- Categorical$new(elements = list("Bapple", "Banana", 2), probs = c(0.2, 0.4, 1))

Length of elements and probabilities cannot be changed after construction
x$setParameterValue(probs = c(0.1, 0.2, 0.7))

d/p/q/r
x$pdf(c("Bapple", "Carrot", 1, 2))
x$cdf("Banana") # Assumes ordered in construction
x$quantile(0.42) # Assumes ordered in construction
x$rand(10)

Statistics
x$mode()

summary(x)

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Categorical$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Categorical$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

32 Categorical

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Categorical$variance(...)

Arguments:

... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Categorical$skewness(...)

Arguments:

... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Categorical$kurtosis(excess = TRUE, ...)

Arguments:

excess (logical(1))
If TRUE (default) excess kurtosis returned.

... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Categorical$entropy(base = 2, ...)

Arguments:

base (integer(1))
Base of the entropy logarithm, default = 2 (Shannon entropy)

... Unused.

Categorical 33

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Categorical$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Categorical$cf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Categorical$pgf(z, ...)

Arguments:
z (integer(1))

z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Categorical$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

34 Cauchy

See Also

Other discrete distributions: Bernoulli, Binomial, Degenerate, DiscreteUniform, EmpiricalMV,
Empirical, Geometric, Hypergeometric, Logarithmic, Multinomial, NegativeBinomial, WeightedDiscrete

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Cauchy,
ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential,
FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel,
Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

Examples

--
Method `Categorical$new`
--

Note probabilities are automatically normalised (if not vectorised)
x <- Categorical$new(elements = list("Bapple", "Banana", 2), probs = c(0.2, 0.4, 1))

Length of elements and probabilities cannot be changed after construction
x$setParameterValue(probs = c(0.1, 0.2, 0.7))

d/p/q/r
x$pdf(c("Bapple", "Carrot", 1, 2))
x$cdf("Banana") # Assumes ordered in construction
x$quantile(0.42) # Assumes ordered in construction
x$rand(10)

Statistics
x$mode()

summary(x)

Cauchy Cauchy Distribution Class

Description

Mathematical and statistical functions for the Cauchy distribution, which is commonly used in
physics and finance.

Details

The Cauchy distribution parameterised with location, α, and scale, β, is defined by the pdf,

f(x) = 1/(πβ(1 + ((x− α)/β)2))

for αεR and β > 0.

Cauchy 35

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Reals.

Default Parameterisation

Cauchy(location = 0, scale = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Cauchy

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:
• Cauchy$new()

• Cauchy$mean()

• Cauchy$mode()

• Cauchy$variance()

• Cauchy$skewness()

• Cauchy$kurtosis()

• Cauchy$entropy()

• Cauchy$mgf()

• Cauchy$cf()

• Cauchy$pgf()

• Cauchy$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

36 Cauchy

Cauchy$new(location = NULL, scale = NULL, decorators = NULL)

Arguments:

location (numeric(1))
Location parameter defined on the Reals.

scale (numeric(1))
Scale parameter defined on the positive Reals.

decorators (character())
Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Cauchy$mean(...)

Arguments:

... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Cauchy$mode(which = "all")

Arguments:

which (character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Cauchy$variance(...)

Arguments:

... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Cauchy 37

Usage:
Cauchy$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Cauchy$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))

If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Cauchy$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Cauchy$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

38 Cauchy

Usage:
Cauchy$cf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Cauchy$pgf(z, ...)

Arguments:
z (integer(1))

z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Cauchy$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Chijing Zeng

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, ChiSquaredNoncentral, ChiSquared,
Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma,
Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential,
FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel,
Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

ChiSquared 39

ChiSquared Chi-Squared Distribution Class

Description

Mathematical and statistical functions for the Chi-Squared distribution, which is commonly used to
model the sum of independent squared Normal distributions and for confidence intervals.

Details

The Chi-Squared distribution parameterised with degrees of freedom, ν, is defined by the pdf,

f(x) = (xν/2−1exp(−x/2))/(2ν/2Γ(ν/2))

for ν > 0.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Positive Reals.

Default Parameterisation

ChiSq(df = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> ChiSquared

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

40 ChiSquared

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:
• ChiSquared$new()

• ChiSquared$mean()

• ChiSquared$mode()

• ChiSquared$variance()

• ChiSquared$skewness()

• ChiSquared$kurtosis()

• ChiSquared$entropy()

• ChiSquared$mgf()

• ChiSquared$cf()

• ChiSquared$pgf()

• ChiSquared$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
ChiSquared$new(df = NULL, decorators = NULL)

Arguments:
df (integer(1))

Degrees of freedom of the distribution defined on the positive Reals.
decorators (character())

Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
ChiSquared$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
ChiSquared$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

ChiSquared 41

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
ChiSquared$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
ChiSquared$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
ChiSquared$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))

If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
ChiSquared$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)

42 ChiSquared

... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
ChiSquared$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
ChiSquared$cf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
ChiSquared$pgf(z, ...)

Arguments:
z (integer(1))

z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ChiSquared$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

ChiSquaredNoncentral 43

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma,
Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential,
FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel,
Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

ChiSquaredNoncentral Noncentral Chi-Squared Distribution Class

Description

Mathematical and statistical functions for the Noncentral Chi-Squared distribution, which is com-
monly used to model the sum of independent squared Normal distributions and for confidence
intervals.

Details

The Noncentral Chi-Squared distribution parameterised with degrees of freedom, ν, and location,
λ, is defined by the pdf,

f(x) = exp(−λ/2)

∞∑
r=0

((λ/2)r/r!)(x(ν+2r)/2−1exp(−x/2))/(2(ν+2r)/2Γ((ν + 2r)/2))

for ν ≥ 0, λ ≥ 0.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Positive Reals.

Default Parameterisation

ChiSqNC(df = 1, location = 0)

Omitted Methods

N/A

44 ChiSquaredNoncentral

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> ChiSquaredNoncentral

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:
• ChiSquaredNoncentral$new()

• ChiSquaredNoncentral$mean()

• ChiSquaredNoncentral$variance()

• ChiSquaredNoncentral$skewness()

• ChiSquaredNoncentral$kurtosis()

• ChiSquaredNoncentral$mgf()

• ChiSquaredNoncentral$cf()

• ChiSquaredNoncentral$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
ChiSquaredNoncentral$new(df = NULL, location = NULL, decorators = NULL)

Arguments:
df (integer(1))

Degrees of freedom of the distribution defined on the positive Reals.
location (numeric(1))

Location parameter, defined on the non-negative Reals.
decorators (character())

Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

ChiSquaredNoncentral 45

Usage:
ChiSquaredNoncentral$mean(...)

Arguments:
... Unused.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
ChiSquaredNoncentral$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
ChiSquaredNoncentral$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
ChiSquaredNoncentral$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))

If TRUE (default) excess kurtosis returned.
... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:

46 ChiSquaredNoncentral

ChiSquaredNoncentral$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
ChiSquaredNoncentral$cf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ChiSquaredNoncentral$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Jordan Deenichin

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquared, Dirichlet,
Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz,
Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral,
FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma,
Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto,
Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform,
Wald, Weibull, WeightedDiscrete

Convolution 47

Convolution Distribution Convolution Wrapper

Description

Calculates the convolution of two distribution via numerical calculations.

Usage

S3 method for class 'Distribution'
x + y

S3 method for class 'Distribution'
x - y

Arguments

x, y Distribution

Details

The convolution of two probability distributions X , Y is the sum

Z = X + Y

which has a pmf,
P (Z = z) =

∑
x

P (X = x)P (Y = z − x)

with an integration analogue for continuous distributions.

Currently distr6 supports the addition of discrete and continuous probability distributions, but only
subtraction of continuous distributions.

Value

Returns an R6 object of class Convolution.

Super classes

distr6::Distribution -> distr6::DistributionWrapper -> Convolution

Methods

Public methods:
• Convolution$new()

• Convolution$clone()

Method new(): Creates a new instance of this R6 class.

48 CoreStatistics

Usage:
Convolution$new(dist1, dist2, add = TRUE)

Arguments:

dist1 ([Distribution])
First Distribution in convolution, i.e. dist1 ± dist2.

dist2 ([Distribution])
Second Distribution in convolution, i.e. dist1 ± dist2.

add (logical(1))
If TRUE (default) then adds the distributions together, otherwise substracts.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Convolution$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other wrappers: DistributionWrapper, HuberizedDistribution, MixtureDistribution, ProductDistribution,
TruncatedDistribution, VectorDistribution

Examples

binom <- Bernoulli$new() + Bernoulli$new()
binom$pdf(2)
Binomial$new(size = 2)$pdf(2)
norm <- Normal$new(mean = 3) - Normal$new(mean = 2)
norm$pdf(1)
Normal$new(mean = 1, var = 2)$pdf(1)

CoreStatistics Core Statistical Methods Decorator

Description

This decorator adds numeric methods for missing analytic expressions in Distributions as well as
adding generalised expectation and moments functions.

Details

Decorator objects add functionality to the given Distribution object by copying methods in the
decorator environment to the chosen Distribution environment.

All methods implemented in decorators try to exploit analytical results where possible, otherwise
numerical results are used with a message.

CoreStatistics 49

Super class

distr6::DistributionDecorator -> CoreStatistics

Methods

Public methods:
• CoreStatistics$mgf()

• CoreStatistics$cf()

• CoreStatistics$pgf()

• CoreStatistics$entropy()

• CoreStatistics$skewness()

• CoreStatistics$kurtosis()

• CoreStatistics$variance()

• CoreStatistics$kthmoment()

• CoreStatistics$genExp()

• CoreStatistics$mode()

• CoreStatistics$mean()

• CoreStatistics$clone()

Method mgf(): Numerically estimates the moment-generating function.

Usage:
CoreStatistics$mgf(t, ...)

Arguments:

t (integer(1))
t integer to evaluate function at.

... ANY
Passed to $genExp.

Method cf(): Numerically estimates the characteristic function.

Usage:
CoreStatistics$cf(t, ...)

Arguments:

t (integer(1))
t integer to evaluate function at.

... ANY
Passed to $genExp.

Method pgf(): Numerically estimates the probability-generating function.

Usage:
CoreStatistics$pgf(z, ...)

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

50 CoreStatistics

... ANY
Passed to $genExp.

Method entropy(): Numerically estimates the entropy function.
Usage:
CoreStatistics$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... ANY

Passed to $genExp.

Method skewness(): Numerically estimates the distribution skewness.
Usage:
CoreStatistics$skewness(...)

Arguments:
... ANY

Passed to $genExp.

Method kurtosis(): Numerically estimates the distribution kurtosis.
Usage:
CoreStatistics$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))

If TRUE (default) excess kurtosis returned.
... ANY

Passed to $genExp.

Method variance(): Numerically estimates the distribution variance.
Usage:
CoreStatistics$variance(...)

Arguments:
... ANY

Passed to $genExp.

Method kthmoment(): The kth central moment of a distribution is defined by

CM(k)X = EX [(x− µ)k]

the kth standardised moment of a distribution is defined by

SM(k)X =
CM(k)

σk

the kth raw moment of a distribution is defined by

RM(k)X = EX [xk]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

CoreStatistics 51

Usage:
CoreStatistics$kthmoment(k, type = c("central", "standard", "raw"), ...)

Arguments:
k integer(1)

The k-th moment to evaluate the distribution at.
type character(1)

Type of moment to evaluate.
... ANY

Passed to $genExp.

Method genExp(): Numerically estimates E[f(X)] for some function f .

Usage:
CoreStatistics$genExp(trafo = NULL, cubature = FALSE, ...)

Arguments:
trafo function()

Transformation function to define the expectation, default is distribution mean.
cubature logical(1)

If TRUE uses cubature::cubintegrate for approximation, otherwise integrate.
... ANY

Passed to cubature::cubintegrate.

Method mode(): Numerically estimates the distribution mode.

Usage:
CoreStatistics$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method mean(): Numerically estimates the distribution mean.

Usage:
CoreStatistics$mean(...)

Arguments:
... ANY

Passed to $genExp.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CoreStatistics$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other decorators: ExoticStatistics, FunctionImputation

52 Cosine

Examples

decorate(Exponential$new(), "CoreStatistics")
Exponential$new(decorators = "CoreStatistics")
CoreStatistics$new()$decorate(Exponential$new())

Cosine Cosine Kernel

Description

Mathematical and statistical functions for the Cosine kernel defined by the pdf,

f(x) = (π/4)cos(xπ/2)

over the support x ∈ (−1, 1).

Super classes

distr6::Distribution -> distr6::Kernel -> Cosine

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

Methods

Public methods:
• Cosine$pdfSquared2Norm()

• Cosine$cdfSquared2Norm()

• Cosine$variance()

• Cosine$clone()

Method pdfSquared2Norm(): The squared 2-norm of the pdf is defined by∫ b

a

(fX(u))2du

where X is the Distribution, fX is its pdf and a, b are the distribution support limits.

Usage:
Cosine$pdfSquared2Norm(x = 0, upper = Inf)

Arguments:

x (numeric(1))
Amount to shift the result.

Cosine 53

upper (numeric(1))
Upper limit of the integral.

Method cdfSquared2Norm(): The squared 2-norm of the cdf is defined by∫ b

a

(FX(u))2du

where X is the Distribution, FX is its pdf and a, b are the distribution support limits.

Usage:

Cosine$cdfSquared2Norm(x = 0, upper = 0)

Arguments:

x (numeric(1))
Amount to shift the result.

upper (numeric(1))
Upper limit of the integral.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:

Cosine$variance(...)

Arguments:

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:

Cosine$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other kernels: Epanechnikov, LogisticKernel, NormalKernel, Quartic, Sigmoid, Silverman,
TriangularKernel, Tricube, Triweight, UniformKernel

54 decorate

decorate Decorate Distributions

Description

Functionality to decorate R6 Distributions (and child classes) with extra methods.

Usage

decorate(distribution, decorators, ...)

Arguments

distribution ([Distribution])
Distribution to decorate.

decorators (character()) Vector of DistributionDecorator names to decorate the Distri-
bution with.

... ANY
Extra arguments passed down to specific decorators.

Details

Decorating is the process of adding methods to classes that are not part of the core interface (Gamma
et al. 1994). Use listDecorators to see which decorators are currently available. The primary
use-cases are to add numeric results when analytic ones are missing, to add complex modelling
functions and to impute missing d/p/q/r functions.

Value

Returns a Distribution with additional methods from the chosen DistributionDecorator.

References

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1994. “Design Patterns: Ele-
ments of Reusable Object-Oriented Software.” Addison-Wesley.

See Also

listDecorators() for available decorators and DistributionDecorator for the parent class.

Examples

B <- Binomial$new()
decorate(B, "CoreStatistics")

E <- Exponential$new()
decorate(E, c("CoreStatistics", "ExoticStatistics"))

Degenerate 55

Degenerate Degenerate Distribution Class

Description

Mathematical and statistical functions for the Degenerate distribution, which is commonly used to
model deterministic events or as a representation of the delta, or Heaviside, function.

Details

The Degenerate distribution parameterised with mean, µ is defined by the pmf,

f(x) = 1, if x = µ

f(x) = 0, if x 6= µ

for µεR.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on µ.

Default Parameterisation

Degen(mean = 0)

Omitted Methods

N/A

Also known as

Also known as the Dirac distribution.

Super classes

distr6::Distribution -> distr6::SDistribution -> Degenerate

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

56 Degenerate

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:
• Degenerate$new()

• Degenerate$mean()

• Degenerate$mode()

• Degenerate$variance()

• Degenerate$skewness()

• Degenerate$kurtosis()

• Degenerate$entropy()

• Degenerate$mgf()

• Degenerate$cf()

• Degenerate$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Degenerate$new(mean = NULL, decorators = NULL)

Arguments:
mean numeric(1)

Mean of the distribution, defined on the Reals.
decorators (character())

Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Degenerate$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Degenerate$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Degenerate 57

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Degenerate$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Degenerate$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Degenerate$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))

If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Degenerate$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)

58 Degenerate

... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Degenerate$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Degenerate$cf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Degenerate$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other discrete distributions: Bernoulli, Binomial, Categorical, DiscreteUniform, EmpiricalMV,
Empirical, Geometric, Hypergeometric, Logarithmic, Multinomial, NegativeBinomial, WeightedDiscrete

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, DiscreteUniform, Empirical, Erlang, Exponential,
FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel,
Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

Dirichlet 59

Dirichlet Dirichlet Distribution Class

Description

Mathematical and statistical functions for the Dirichlet distribution, which is commonly used as a
prior in Bayesian modelling and is multivariate generalisation of the Beta distribution.

Details

The Dirichlet distribution parameterised with concentration parameters, α1, ..., αk, is defined by the
pdf,

f(x1, ..., xk) = (
∏

Γ(αi))/(Γ(
∑

αi))
∏

(xαi−1
i)

for α = α1, ..., αk;α > 0, where Γ is the gamma function.

Sampling is performed via sampling independent Gamma distributions and normalising the samples
(Devroye, 1986).

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on xi ε (0, 1),
∑
xi = 1.

Default Parameterisation

Diri(params = c(1, 1))

Omitted Methods

cdf and quantile are omitted as no closed form analytic expression could be found, decorate with
FunctionImputation for a numerical imputation.

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Dirichlet

Public fields

name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.
packages Packages required to be installed in order to construct the distribution.

60 Dirichlet

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

• Dirichlet$new()

• Dirichlet$mean()

• Dirichlet$mode()

• Dirichlet$variance()

• Dirichlet$entropy()

• Dirichlet$pgf()

• Dirichlet$setParameterValue()

• Dirichlet$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Dirichlet$new(params = NULL, decorators = NULL)

Arguments:

params numeric()
Vector of concentration parameters of the distribution defined on the positive Reals.

decorators (character())
Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Dirichlet$mean(...)

Arguments:

... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Dirichlet$mode(which = "all")

Arguments:

which (character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Dirichlet 61

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Dirichlet$variance(...)

Arguments:
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Dirichlet$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Dirichlet$pgf(z, ...)

Arguments:
z (integer(1))

z integer to evaluate probability generating function at.
... Unused.

Method setParameterValue(): Sets the value(s) of the given parameter(s).

Usage:
Dirichlet$setParameterValue(
...,
lst = list(...),
error = "warn",
resolveConflicts = FALSE

)

Arguments:
... ANY

Named arguments of parameters to set values for. See examples.

62 DiscreteUniform

lst (list(1))
Alternative argument for passing parameters. List names should be parameter names and
list values are the new values to set.

error (character(1))
If "warn" then returns a warning on error, otherwise breaks if "stop".

resolveConflicts (logical(1))
If FALSE (default) throws error if conflicting parameterisations are provided, otherwise au-
tomatically resolves them by removing all conflicting parameters.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Dirichlet$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

Devroye, Luc (1986). Non-Uniform Random Variate Generation. Springer-Verlag. ISBN 0-387-
96305-7.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma,
Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

Other multivariate distributions: EmpiricalMV, Multinomial, MultivariateNormal

Examples

d <- Dirichlet$new(params = c(2, 5, 6))
d$pdf(0.1, 0.4, 0.5)
d$pdf(c(0.3, 0.2), c(0.6, 0.9), c(0.9, 0.1))

DiscreteUniform Discrete Uniform Distribution Class

Description

Mathematical and statistical functions for the Discrete Uniform distribution, which is commonly
used as a discrete variant of the more popular Uniform distribution, used to model events with an
equal probability of occurring (e.g. role of a die).

DiscreteUniform 63

Details

The Discrete Uniform distribution parameterised with lower, a, and upper, b, limits is defined by
the pmf,

f(x) = 1/(b− a+ 1)

for a, b ∈ Z; b ≥ a.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on {a, a+ 1, ..., b}.

Default Parameterisation

DUnif(lower = 0, upper = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> DiscreteUniform

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:
• DiscreteUniform$new()

• DiscreteUniform$mean()

• DiscreteUniform$mode()

• DiscreteUniform$variance()

64 DiscreteUniform

• DiscreteUniform$skewness()

• DiscreteUniform$kurtosis()

• DiscreteUniform$entropy()

• DiscreteUniform$mgf()

• DiscreteUniform$cf()

• DiscreteUniform$pgf()

• DiscreteUniform$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
DiscreteUniform$new(lower = NULL, upper = NULL, decorators = NULL)

Arguments:
lower (integer(1))

Lower limit of the Distribution, defined on the Naturals.
upper (integer(1))

Upper limit of the Distribution, defined on the Naturals.
decorators (character())

Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
DiscreteUniform$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
DiscreteUniform$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:

DiscreteUniform 65

DiscreteUniform$variance(...)

Arguments:

... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
DiscreteUniform$skewness(...)

Arguments:

... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
DiscreteUniform$kurtosis(excess = TRUE, ...)

Arguments:

excess (logical(1))
If TRUE (default) excess kurtosis returned.

... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
DiscreteUniform$entropy(base = 2, ...)

Arguments:

base (integer(1))
Base of the entropy logarithm, default = 2 (Shannon entropy)

... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

66 DiscreteUniform

Usage:

DiscreteUniform$mgf(t, ...)

Arguments:

t (integer(1))
t integer to evaluate function at.

... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:

DiscreteUniform$cf(t, ...)

Arguments:

t (integer(1))
t integer to evaluate function at.

... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:

DiscreteUniform$pgf(z, ...)

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:

DiscreteUniform$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

distr6News 67

See Also

Other discrete distributions: Bernoulli, Binomial, Categorical, Degenerate, EmpiricalMV,
Empirical, Geometric, Hypergeometric, Logarithmic, Multinomial, NegativeBinomial, WeightedDiscrete

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, Empirical, Erlang, Exponential,
FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel,
Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

distr6News Show distr6 NEWS.md File

Description

Displays the contents of the NEWS.md file for viewing distr6 release information.

Usage

distr6News()

Value

NEWS.md in viewer.

Examples

Not run:
distr6News()

End(Not run)

Distribution Generalised Distribution Object

Description

A generalised distribution object for defining custom probability distributions as well as serving as
the parent class to specific, familiar distributions.

Value

Returns R6 object of class Distribution.

68 Distribution

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

Active bindings

decorators Returns decorators currently used to decorate the distribution.

traits Returns distribution traits.

valueSupport Deprecated, use $traits$valueSupport.

variateForm Deprecated, use $traits$variateForm.

type Deprecated, use $traits$type.

properties Returns distribution properties, including skewness type and symmetry.

support Deprecated, use $properties$type.

symmetry Deprecated, use $properties$symmetry.

sup Returns supremum (upper bound) of the distribution support.

inf Returns infimum (lower bound) of the distribution support.

dmax Returns maximum of the distribution support.

dmin Returns minimum of the distribution support.

kurtosisType Deprecated, use $properties$kurtosis.

skewnessType Deprecated, use $properties$skewness.

Methods

Public methods:
• Distribution$new()

• Distribution$strprint()

• Distribution$print()

• Distribution$summary()

• Distribution$parameters()

• Distribution$getParameterValue()

• Distribution$setParameterValue()

• Distribution$pdf()

• Distribution$cdf()

• Distribution$quantile()

• Distribution$rand()

• Distribution$prec()

• Distribution$stdev()

• Distribution$median()

• Distribution$iqr()

• Distribution$correlation()

Distribution 69

• Distribution$liesInSupport()

• Distribution$liesInType()

• Distribution$workingSupport()

• Distribution$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Distribution$new(
name = NULL,
short_name = NULL,
type,
support = NULL,
symmetric = FALSE,
pdf = NULL,
cdf = NULL,
quantile = NULL,
rand = NULL,
parameters = NULL,
decorators = NULL,
valueSupport = NULL,
variateForm = NULL,
description = NULL,
.suppressChecks = FALSE

)

Arguments:

name character(1)
Full name of distribution.

short_name character(1)
Short name of distribution for printing.

type ([set6::Set])
Distribution type.

support ([set6::Set])
Distribution support.

symmetric logical(1)
Symmetry type of the distribution.

pdf function(1)
Probability density function of the distribution. At least one of pdf and cdf must be pro-
vided.

cdf function(1)
Cumulative distribution function of the distribution. At least one of pdf and cdf must be
provided.

quantile function(1)
Quantile (inverse-cdf) function of the distribution.

rand function(1)
Simulation function for drawing random samples from the distribution.

70 Distribution

parameters ([param6::ParameterSet])
Parameter set for defining the parameters in the distribution, which should be set before
construction.

decorators (character())
Decorators to add to the distribution during construction.

valueSupport (character(1))
The support type of the distribution, one of "discrete", "continuous", "mixture". If NULL,
determined automatically.

variateForm (character(1))
The variate type of the distribution, one of "univariate", "multivariate", "matrixvariate". If
NULL, determined automatically.

description (character(1))
Optional short description of the distribution.

.suppressChecks (logical(1))
Used internally.

Method strprint(): Printable string representation of the Distribution. Primarily used
internally.

Usage:
Distribution$strprint(n = 2)

Arguments:
n (integer(1))

Number of parameters to display when printing.

Method print(): Prints the Distribution.

Usage:
Distribution$print(n = 2, ...)

Arguments:
n (integer(1))

Passed to $strprint.
... ANY

Unused. Added for consistency.

Method summary(): Prints a summary of the Distribution.

Usage:
Distribution$summary(full = TRUE, ...)

Arguments:
full (logical(1))

If TRUE (default) prints a long summary of the distribution, otherwise prints a shorter sum-
mary.

... ANY
Unused. Added for consistency.

Method parameters(): Returns the full parameter details for the supplied parameter.

Usage:

Distribution 71

Distribution$parameters(id = NULL)

Arguments:
id Deprecated.

Method getParameterValue(): Returns the value of the supplied parameter.
Usage:
Distribution$getParameterValue(id, error = "warn")

Arguments:
id character()

id of parameter value to return.
error (character(1))

If "warn" then returns a warning on error, otherwise breaks if "stop".

Method setParameterValue(): Sets the value(s) of the given parameter(s).
Usage:
Distribution$setParameterValue(
...,
lst = list(...),
error = "warn",
resolveConflicts = FALSE

)

Arguments:
... ANY

Named arguments of parameters to set values for. See examples.
lst (list(1))

Alternative argument for passing parameters. List names should be parameter names and
list values are the new values to set.

error (character(1))
If "warn" then returns a warning on error, otherwise breaks if "stop".

resolveConflicts (logical(1))
If FALSE (default) throws error if conflicting parameterisations are provided, otherwise au-
tomatically resolves them by removing all conflicting parameters.

Examples:
b = Binomial$new()
b$setParameterValue(size = 4, prob = 0.4)
b$setParameterValue(lst = list(size = 4, prob = 0.4))

Method pdf(): For discrete distributions the probability mass function (pmf) is returned, defined
as

pX(x) = P (X = x)

for continuous distributions the probability density function (pdf), fX , is returned

fX(x) = P (x < X ≤ x+ dx)

for some infinitesimally small dx.
If available a pdf will be returned using an analytic expression. Otherwise, if the distribution has
not been decorated with FunctionImputation, NULL is returned.

72 Distribution

Usage:
Distribution$pdf(..., log = FALSE, simplify = TRUE, data = NULL)

Arguments:
... (numeric())

Points to evaluate the function at Arguments do not need to be named. The length of each
argument corresponds to the number of points to evaluate, the number of arguments corre-
sponds to the number of variables in the distribution. See examples.

log (logical(1))
If TRUE returns the logarithm of the probabilities. Default is FALSE.

simplify logical(1)
If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

data array
Alternative method to specify points to evaluate. If univariate then rows correspond with
number of points to evaluate and columns correspond with number of variables to evalu-
ate. In the special case of VectorDistributions of multivariate distributions, then the third
dimension corresponds to the distribution in the vector to evaluate.

Examples:
b <- Binomial$new()
b$pdf(1:10)
b$pdf(1:10, log = TRUE)
b$pdf(data = matrix(1:10))

mvn <- MultivariateNormal$new()
mvn$pdf(1, 2)
mvn$pdf(1:2, 3:4)
mvn$pdf(data = matrix(1:4, nrow = 2), simplify = FALSE)

Method cdf(): The (lower tail) cumulative distribution function, FX , is defined as

FX(x) = P (X ≤ x)

If lower.tail is FALSE then 1− FX(x) is returned, also known as the survival function.
If available a cdf will be returned using an analytic expression. Otherwise, if the distribution has
not been decorated with FunctionImputation, NULL is returned.

Usage:
Distribution$cdf(
...,
lower.tail = TRUE,
log.p = FALSE,
simplify = TRUE,
data = NULL

)

Arguments:
... (numeric())

Points to evaluate the function at Arguments do not need to be named. The length of each
argument corresponds to the number of points to evaluate, the number of arguments corre-
sponds to the number of variables in the distribution. See examples.

Distribution 73

lower.tail (logical(1))
If TRUE (default), probabilities are X <= x, otherwise, P(X > x).

log.p (logical(1))
If TRUE returns the logarithm of the probabilities. Default is FALSE.

simplify logical(1)
If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

data array
Alternative method to specify points to evaluate. If univariate then rows correspond with
number of points to evaluate and columns correspond with number of variables to evalu-
ate. In the special case of VectorDistributions of multivariate distributions, then the third
dimension corresponds to the distribution in the vector to evaluate.

Examples:

b <- Binomial$new()
b$cdf(1:10)
b$cdf(1:10, log.p = TRUE, lower.tail = FALSE)
b$cdf(data = matrix(1:10))

Method quantile(): The quantile function, qX , is the inverse cdf, i.e.

qX(p) = F−1X (p) = inf{x ∈ R : FX(x) ≥ p}

#nolint
If lower.tail is FALSE then qX(1− p) is returned.
If available a quantile will be returned using an analytic expression. Otherwise, if the distribution
has not been decorated with FunctionImputation, NULL is returned.

Usage:
Distribution$quantile(
...,
lower.tail = TRUE,
log.p = FALSE,
simplify = TRUE,
data = NULL

)

Arguments:

... (numeric())
Points to evaluate the function at Arguments do not need to be named. The length of each
argument corresponds to the number of points to evaluate, the number of arguments corre-
sponds to the number of variables in the distribution. See examples.

lower.tail (logical(1))
If TRUE (default), probabilities are X <= x, otherwise, P(X > x).

log.p (logical(1))
If TRUE returns the logarithm of the probabilities. Default is FALSE.

simplify logical(1)
If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

data array
Alternative method to specify points to evaluate. If univariate then rows correspond with

74 Distribution

number of points to evaluate and columns correspond with number of variables to evalu-
ate. In the special case of VectorDistributions of multivariate distributions, then the third
dimension corresponds to the distribution in the vector to evaluate.

Examples:

b <- Binomial$new()
b$quantile(0.42)
b$quantile(log(0.42), log.p = TRUE, lower.tail = TRUE)
b$quantile(data = matrix(c(0.1,0.2)))

Method rand(): The rand function draws n simulations from the distribution.
If available simulations will be returned using an analytic expression. Otherwise, if the distribu-
tion has not been decorated with FunctionImputation, NULL is returned.

Usage:
Distribution$rand(n, simplify = TRUE)

Arguments:

n (numeric(1))
Number of points to simulate from the distribution. If length greater than 1, then n <-length(n),

simplify logical(1)
If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

Examples:

b <- Binomial$new()
b$rand(10)

mvn <- MultivariateNormal$new()
mvn$rand(5)

Method prec(): Returns the precision of the distribution as 1/self$variance().

Usage:
Distribution$prec()

Method stdev(): Returns the standard deviation of the distribution as sqrt(self$variance()).

Usage:
Distribution$stdev()

Method median(): Returns the median of the distribution. If an analytical expression is avail-
able returns distribution median, otherwise if symmetric returns self$mean, otherwise returns
self$quantile(0.5).

Usage:
Distribution$median(na.rm = NULL, ...)

Arguments:

na.rm (logical(1))
Ignored, addded for consistency.

... ANY
Ignored, addded for consistency.

Distribution 75

Method iqr(): Inter-quartile range of the distribution. Estimated as self$quantile(0.75)
-self$quantile(0.25).

Usage:
Distribution$iqr()

Method correlation(): If univariate returns 1, otherwise returns the distribution correlation.

Usage:
Distribution$correlation()

Method liesInSupport(): Tests if the given values lie in the support of the distribution. Uses
[set6::Set]$contains.

Usage:
Distribution$liesInSupport(x, all = TRUE, bound = FALSE)

Arguments:

x ANY
Values to test.

all logical(1)
If TRUE (default) returns TRUE if all x are in the distribution, otherwise returns a vector of
logicals corresponding to each element in x.

bound logical(1)
If TRUE then tests if x lie between the upper and lower bounds of the distribution, otherwise
tests if x lie between the maximum and minimum of the distribution.

Method liesInType(): Tests if the given values lie in the type of the distribution. Uses
[set6::Set]$contains.

Usage:
Distribution$liesInType(x, all = TRUE, bound = FALSE)

Arguments:

x ANY
Values to test.

all logical(1)
If TRUE (default) returns TRUE if all x are in the distribution, otherwise returns a vector of
logicals corresponding to each element in x.

bound logical(1)
If TRUE then tests if x lie between the upper and lower bounds of the distribution, otherwise
tests if x lie between the maximum and minimum of the distribution.

Method workingSupport(): Returns an estimate for the computational support of the distribu-
tion. If an analytical cdf is available, then this is computed as the smallest interval in which the
cdf lower bound is 0 and the upper bound is 1, bounds are incremented in 10^i intervals. If no
analytical cdf is available, then this is computed as the smallest interval in which the lower and
upper bounds of the pdf are 0, this is much less precise and is more prone to error. Used primarily
by decorators.

Usage:
Distribution$workingSupport()

76 Distribution

Method clone(): The objects of this class are cloneable with this method.

Usage:
Distribution$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Distribution$setParameterValue`
--

b = Binomial$new()
b$setParameterValue(size = 4, prob = 0.4)
b$setParameterValue(lst = list(size = 4, prob = 0.4))

--
Method `Distribution$pdf`
--

b <- Binomial$new()
b$pdf(1:10)
b$pdf(1:10, log = TRUE)
b$pdf(data = matrix(1:10))

mvn <- MultivariateNormal$new()
mvn$pdf(1, 2)
mvn$pdf(1:2, 3:4)
mvn$pdf(data = matrix(1:4, nrow = 2), simplify = FALSE)

--
Method `Distribution$cdf`
--

b <- Binomial$new()
b$cdf(1:10)
b$cdf(1:10, log.p = TRUE, lower.tail = FALSE)
b$cdf(data = matrix(1:10))

--
Method `Distribution$quantile`
--

b <- Binomial$new()
b$quantile(0.42)
b$quantile(log(0.42), log.p = TRUE, lower.tail = TRUE)
b$quantile(data = matrix(c(0.1,0.2)))

--
Method `Distribution$rand`

DistributionDecorator 77

--

b <- Binomial$new()
b$rand(10)

mvn <- MultivariateNormal$new()
mvn$rand(5)

DistributionDecorator Abstract DistributionDecorator Class

Description

Abstract class that cannot be constructed directly.

Details

Decorating is the process of adding methods to classes that are not part of the core interface (Gamma
et al. 1994). Use listDecorators to see which decorators are currently available. The primary use-
cases are to add numeric results when analytic ones are missing, to add complex modelling functions
and to impute missing d/p/q/r functions.

Use decorate or $decorate to decorate distributions.

Value

Returns error. Abstract classes cannot be constructed directly.

An R6 object.

Public fields

packages Packages required to be installed in order to construct the distribution.

Active bindings

methods Returns the names of the available methods in this decorator.

Methods

Public methods:

• DistributionDecorator$new()

• DistributionDecorator$decorate()

• DistributionDecorator$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
DistributionDecorator$new()

78 DistributionWrapper

Method decorate(): Decorates the given distribution with the methods available in this deco-
rator.

Usage:
DistributionDecorator$decorate(distribution, ...)

Arguments:

distribution Distribution
Distribution to decorate.

... ANY
Extra arguments passed down to specific decorators.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DistributionDecorator$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1994. “Design Patterns: Ele-
ments of Reusable Object-Oriented Software.” Addison-Wesley.

DistributionWrapper Abstract DistributionWrapper Class

Description

Abstract class that cannot be constructed directly.

Details

Wrappers in distr6 use the composite pattern (Gamma et al. 1994), so that a wrapped distribution has
the same methods and fields as an unwrapped one. After wrapping, the parameters of a distribution
are prefixed with the distribution name to ensure uniqueness of parameter IDs.

Use listWrappers function to see constructable wrappers.

Value

Returns error. Abstract classes cannot be constructed directly.

Super class

distr6::Distribution -> DistributionWrapper

DistributionWrapper 79

Methods

Public methods:
• DistributionWrapper$new()

• DistributionWrapper$wrappedModels()

• DistributionWrapper$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
DistributionWrapper$new(
distlist = NULL,
name,
short_name,
description,
support,
type,
valueSupport,
variateForm,
parameters = NULL,
outerID = NULL

)

Arguments:
distlist (list())

List of Distributions.
name (character(1))

Wrapped distribution name.
short_name (character(1))

Wrapped distribution ID.
description (character())

Wrapped distribution description.
support ([set6::Set])

Wrapped distribution support.
type ([set6::Set])

Wrapped distribution type.
valueSupport (character(1))

Wrapped distribution value support.
variateForm (character(1))

Wrapped distribution variate form.
parameters ([param6::ParameterSet])

Optional parameters to add to the internal collection, ignored if distlist is given.
outerID ([param6::ParameterSet])

Parameters added by the wrapper.

Method wrappedModels(): Returns model(s) wrapped by this wrapper.

Usage:
DistributionWrapper$wrappedModels(model = NULL)

80 distrSimulate

Arguments:

model (character(1))
id of wrapped Distributions to return. If NULL (default), a list of all wrapped Distributions
is returned; if only one Distribution is matched then this is returned, otherwise a list of
Distributions.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DistributionWrapper$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1994. “Design Patterns: Ele-
ments of Reusable Object-Oriented Software.” Addison-Wesley.

See Also

Other wrappers: Convolution, HuberizedDistribution, MixtureDistribution, ProductDistribution,
TruncatedDistribution, VectorDistribution

distrSimulate Simulate from a Distribution

Description

Helper function to quickly simulate from a distribution with given parameters.

Usage

distrSimulate(
n = 100,
distribution = "Normal",
pars = list(),
simplify = TRUE,
seed,
...

)

Arguments

n number of points to simulate.

distribution distribution to simulate from, corresponds to ClassName of distr6 distribution,
abbreviations allowed.

dstr 81

pars parameters to pass to distribution. If omitted then distribution defaults
used.

simplify if TRUE (default) only the simulations are returned, otherwise the constructed
distribution is also returned.

seed passed to set.seed

... additional optional arguments for set.seed

Value

If simplify then vector of n simulations, otherwise list of simulations and distribution.

dstr Helper Functionality for Constructing Distributions

Description

Helper functions for constructing an SDistribution (with dstr) or VectorDistribution (with dstrs).

Usage

dstr(d, ..., pars = NULL)

dstrs(d, pars = NULL, ...)

Arguments

d (character(1))
Distribution. Can be the ShortName or ClassName from listDistributions().

... (ANY)
Passed to the distribution constructor, should be parameters or decorators.

pars (list())
List of parameters of same length as d corresponding to distribution parameters.

Examples

Construct standard Normal and distribution
dstr("Norm") # ShortName
dstr("Normal") # ClassName

Construct Binomial(5, 0.1)
dstr("Binomial", size = 5, prob = 0.1)

Construct decorated Gamma(2, 1)
dstr("Gamma", shape = 2, rate = 1,

decorators = "ExoticStatistics")

Or with a list

82 Empirical

dstr("Gamma", pars = list(shape = 2, rate = 4))

Construct vector with dstrs

Binomial and Gamma with default parameters
dstrs(c("Binom", "Gamma"))

Binomial with set parameters and Gamma with
default parameters
dstrs(c("Binom", "Gamma"), list(list(size = 4), NULL))

Binomial and Gamma with set parameters
dstrs(c("Binom", "Gamma"),

list(list(size = 4), list(rate = 2, shape = 3)))

Multiple Binomials
dstrs("Binom", data.frame(size = 1:5, prob = 0.5))

Empirical Empirical Distribution Class

Description

Mathematical and statistical functions for the Empirical distribution, which is commonly used in
sampling such as MCMC.

Details

The Empirical distribution is defined by the pmf,

p(x) =
∑

I(x = xi)/k

for xiεR, i = 1, ..., k.

Sampling from this distribution is performed with the sample function with the elements given
as the support set and uniform probabilities. Sampling is performed with replacement, which is
consistent with other distributions but non-standard for Empirical distributions. Use simulateEm-
piricalDistribution to sample without replacement.

The cdf and quantile assumes that the elements are supplied in an indexed order (otherwise the
results are meaningless).

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on x1, ..., xk.

Empirical 83

Default Parameterisation

Emp(samples = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Empirical

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

Methods

Public methods:
• Empirical$new()

• Empirical$mean()

• Empirical$mode()

• Empirical$variance()

• Empirical$skewness()

• Empirical$kurtosis()

• Empirical$entropy()

• Empirical$mgf()

• Empirical$cf()

• Empirical$pgf()

• Empirical$setParameterValue()

• Empirical$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Empirical$new(samples = NULL, decorators = NULL)

Arguments:

samples (numeric())
Vector of observed samples, see examples.

decorators (character())
Decorators to add to the distribution during construction.

84 Empirical

Examples:

Empirical$new(runif(1000))

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Empirical$mean(...)

Arguments:

... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Empirical$mode(which = "all")

Arguments:

which (character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Empirical$variance(...)

Arguments:

... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Empirical$skewness(...)

Arguments:

... Unused.

Empirical 85

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Empirical$kurtosis(excess = TRUE, ...)

Arguments:

excess (logical(1))
If TRUE (default) excess kurtosis returned.

... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Empirical$entropy(base = 2, ...)

Arguments:

base (integer(1))
Base of the entropy logarithm, default = 2 (Shannon entropy)

... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Empirical$mgf(t, ...)

Arguments:

t (integer(1))
t integer to evaluate function at.

... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Empirical$cf(t, ...)

Arguments:

86 Empirical

t (integer(1))
t integer to evaluate function at.

... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Empirical$pgf(z, ...)

Arguments:
z (integer(1))

z integer to evaluate probability generating function at.
... Unused.

Method setParameterValue(): Sets the value(s) of the given parameter(s).

Usage:
Empirical$setParameterValue(
...,
lst = NULL,
error = "warn",
resolveConflicts = FALSE

)

Arguments:
... ANY

Named arguments of parameters to set values for. See examples.
lst (list(1))

Alternative argument for passing parameters. List names should be parameter names and
list values are the new values to set.

error (character(1))
If "warn" then returns a warning on error, otherwise breaks if "stop".

resolveConflicts (logical(1))
If FALSE (default) throws error if conflicting parameterisations are provided, otherwise au-
tomatically resolves them by removing all conflicting parameters.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Empirical$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

EmpiricalMV 87

See Also

Other discrete distributions: Bernoulli, Binomial, Categorical, Degenerate, DiscreteUniform,
EmpiricalMV, Geometric, Hypergeometric, Logarithmic, Multinomial, NegativeBinomial,
WeightedDiscrete

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Erlang, Exponential,
FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel,
Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

Examples

--
Method `Empirical$new`
--

Empirical$new(runif(1000))

EmpiricalMV EmpiricalMV Distribution Class

Description

Mathematical and statistical functions for the EmpiricalMV distribution, which is commonly used
in sampling such as MCMC.

Details

The EmpiricalMV distribution is defined by the pmf,

p(x) =
∑

I(x = xi)/k

for xiεR, i = 1, ..., k.

Sampling from this distribution is performed with the sample function with the elements given
as the support set and uniform probabilities. Sampling is performed with replacement, which is
consistent with other distributions but non-standard for Empirical distributions. Use simulateEm-
piricalDistribution to sample without replacement.

The cdf assumes that the elements are supplied in an indexed order (otherwise the results are mean-
ingless).

Value

Returns an R6 object inheriting from class SDistribution.

88 EmpiricalMV

Distribution support

The distribution is supported on x1, ..., xk.

Default Parameterisation

EmpMV(data = data.frame(1, 1))

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> EmpiricalMV

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

Methods

Public methods:

• EmpiricalMV$new()

• EmpiricalMV$mean()

• EmpiricalMV$variance()

• EmpiricalMV$setParameterValue()

• EmpiricalMV$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
EmpiricalMV$new(data = NULL, decorators = NULL)

Arguments:

data [matrix]
Matrix-like object where each column is a vector of observed samples corresponding to
each variable.

decorators (character())
Decorators to add to the distribution during construction.

Examples:

EmpiricalMV$new(MultivariateNormal$new()$rand(100))

EmpiricalMV 89

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
EmpiricalMV$mean(...)

Arguments:
... Unused.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
EmpiricalMV$variance(...)

Arguments:
... Unused.

Method setParameterValue(): Sets the value(s) of the given parameter(s).

Usage:
EmpiricalMV$setParameterValue(
...,
lst = NULL,
error = "warn",
resolveConflicts = FALSE

)

Arguments:
... ANY

Named arguments of parameters to set values for. See examples.
lst (list(1))

Alternative argument for passing parameters. List names should be parameter names and
list values are the new values to set.

error (character(1))
If "warn" then returns a warning on error, otherwise breaks if "stop".

resolveConflicts (logical(1))
If FALSE (default) throws error if conflicting parameterisations are provided, otherwise au-
tomatically resolves them by removing all conflicting parameters.

Method clone(): The objects of this class are cloneable with this method.

Usage:
EmpiricalMV$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

90 Epanechnikov

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other discrete distributions: Bernoulli, Binomial, Categorical, Degenerate, DiscreteUniform,
Empirical, Geometric, Hypergeometric, Logarithmic, Multinomial, NegativeBinomial, WeightedDiscrete

Other multivariate distributions: Dirichlet, Multinomial, MultivariateNormal

Examples

--
Method `EmpiricalMV$new`
--

EmpiricalMV$new(MultivariateNormal$new()$rand(100))

Epanechnikov Epanechnikov Kernel

Description

Mathematical and statistical functions for the Epanechnikov kernel defined by the pdf,

f(x) =
3

4
(1− x2)

over the support x ∈ (−1, 1).

Details

The quantile function is omitted as no closed form analytic expressions could be found, decorate
with FunctionImputation for numeric results.

Super classes

distr6::Distribution -> distr6::Kernel -> Epanechnikov

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

Epanechnikov 91

Methods

Public methods:
• Epanechnikov$pdfSquared2Norm()

• Epanechnikov$cdfSquared2Norm()

• Epanechnikov$variance()

• Epanechnikov$clone()

Method pdfSquared2Norm(): The squared 2-norm of the pdf is defined by∫ b

a

(fX(u))2du

where X is the Distribution, fX is its pdf and a, b are the distribution support limits.

Usage:
Epanechnikov$pdfSquared2Norm(x = 0, upper = Inf)

Arguments:

x (numeric(1))
Amount to shift the result.

upper (numeric(1))
Upper limit of the integral.

Method cdfSquared2Norm(): The squared 2-norm of the cdf is defined by∫ b

a

(FX(u))2du

where X is the Distribution, FX is its pdf and a, b are the distribution support limits.

Usage:
Epanechnikov$cdfSquared2Norm(x = 0, upper = 0)

Arguments:

x (numeric(1))
Amount to shift the result.

upper (numeric(1))
Upper limit of the integral.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Epanechnikov$variance(...)

Arguments:

... Unused.

92 Erlang

Method clone(): The objects of this class are cloneable with this method.

Usage:
Epanechnikov$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other kernels: Cosine, LogisticKernel, NormalKernel, Quartic, Sigmoid, Silverman, TriangularKernel,
Tricube, Triweight, UniformKernel

Erlang Erlang Distribution Class

Description

Mathematical and statistical functions for the Erlang distribution, which is commonly used as a
special case of the Gamma distribution when the shape parameter is an integer.

Details

The Erlang distribution parameterised with shape, α, and rate, β, is defined by the pdf,

f(x) = (βα)(xα−1)(exp(−xβ))/(α− 1)!

for α = 1, 2, 3, . . . and β > 0.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Positive Reals.

Default Parameterisation

Erlang(shape = 1, rate = 1)

Omitted Methods

N/A

Also known as

N/A

Erlang 93

Super classes

distr6::Distribution -> distr6::SDistribution -> Erlang

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:
• Erlang$new()

• Erlang$mean()

• Erlang$mode()

• Erlang$variance()

• Erlang$skewness()

• Erlang$kurtosis()

• Erlang$entropy()

• Erlang$mgf()

• Erlang$cf()

• Erlang$pgf()

• Erlang$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Erlang$new(shape = NULL, rate = NULL, scale = NULL, decorators = NULL)

Arguments:

shape (integer(1))
Shape parameter, defined on the positive Naturals.

rate (numeric(1))
Rate parameter of the distribution, defined on the positive Reals.

scale numeric(1))
Scale parameter of the distribution, defined on the positive Reals. scale = 1/rate. If
provided rate is ignored.

decorators (character())
Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

94 Erlang

Usage:
Erlang$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Erlang$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Erlang$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Erlang$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Erlang$kurtosis(excess = TRUE, ...)

Arguments:

Erlang 95

excess (logical(1))
If TRUE (default) excess kurtosis returned.

... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Erlang$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Erlang$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Erlang$cf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Erlang$pgf(z, ...)

96 exkurtosisType

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Erlang$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Exponential, FDistributionNoncentral, FDistribution, Frechet,
Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Exponential,
FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel,
Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

exkurtosisType Kurtosis Type

Description

Gets the type of (excess) kurtosis

Usage

exkurtosisType(kurtosis)

Arguments

kurtosis numeric.

ExoticStatistics 97

Details

Kurtosis is a measure of the tailedness of a distribution. Distributions can be compared to the
Normal distribution by whether their kurtosis is higher, lower or the same as that of the Normal
distribution.

A distribution with a negative excess kurtosis is called ’platykurtic’, a distribution with a positive
excess kurtosis is called ’leptokurtic’ and a distribution with an excess kurtosis equal to zero is
called ’mesokurtic’.

Value

Returns one of ’platykurtic’, ’mesokurtic’ or ’leptokurtic’.

Examples

exkurtosisType(-1)
exkurtosisType(0)
exkurtosisType(1)

ExoticStatistics Exotic Statistical Methods Decorator

Description

This decorator adds methods for more complex statistical methods including p-norms, survival and
hazard functions and anti-derivatives. If possible analytical expressions are exploited, otherwise
numerical ones are used with a message.

Details

Decorator objects add functionality to the given Distribution object by copying methods in the
decorator environment to the chosen Distribution environment.

All methods implemented in decorators try to exploit analytical results where possible, otherwise
numerical results are used with a message.

Super class

distr6::DistributionDecorator -> ExoticStatistics

Methods

Public methods:
• ExoticStatistics$cdfAntiDeriv()

• ExoticStatistics$survivalAntiDeriv()

• ExoticStatistics$survival()

• ExoticStatistics$hazard()

• ExoticStatistics$cumHazard()

98 ExoticStatistics

• ExoticStatistics$cdfPNorm()

• ExoticStatistics$pdfPNorm()

• ExoticStatistics$survivalPNorm()

• ExoticStatistics$clone()

Method cdfAntiDeriv(): The cdf anti-derivative is defined by

acdf(a, b) =

∫ b

a

FX(x)dx

where X is the distribution, FX is the cdf of the distribution X and a, b are the lower and upper
limits of integration.

Usage:
ExoticStatistics$cdfAntiDeriv(lower = NULL, upper = NULL)

Arguments:
lower (numeric(1)

Lower bounds of integral.
upper (numeric(1)

Upper bounds of integral.

Method survivalAntiDeriv(): The survival anti-derivative is defined by

as(a, b) =

∫ b

a

SX(x)dx

where X is the distribution, SX is the survival function of the distributionX and a, b are the lower
and upper limits of integration.

Usage:
ExoticStatistics$survivalAntiDeriv(lower = NULL, upper = NULL)

Arguments:
lower (numeric(1)

Lower bounds of integral.
upper (numeric(1)

Upper bounds of integral.

Method survival(): The survival function is defined by

SX(x) = P (X ≥ x) = 1− FX(x) =

∫ ∞
x

fX(x)dx

where X is the distribution, SX is the survival function, FX is the cdf and fX is the pdf.

Usage:
ExoticStatistics$survival(..., log = FALSE, simplify = TRUE, data = NULL)

Arguments:
... (numeric())

Points to evaluate the function at Arguments do not need to be named. The length of each
argument corresponds to the number of points to evaluate, the number of arguments corre-
sponds to the number of variables in the distribution. See examples.

ExoticStatistics 99

log (logical(1))
If TRUE returns the logarithm of the probabilities. Default is FALSE.

simplify logical(1)
If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

data array
Alternative method to specify points to evaluate. If univariate then rows correspond with
number of points to evaluate and columns correspond with number of variables to evalu-
ate. In the special case of VectorDistributions of multivariate distributions, then the third
dimension corresponds to the distribution in the vector to evaluate.

Method hazard(): The hazard function is defined by

hX(x) =
fX
SX

where X is the distribution, SX is the survival function and fX is the pdf.

Usage:
ExoticStatistics$hazard(..., log = FALSE, simplify = TRUE, data = NULL)

Arguments:
... (numeric())

Points to evaluate the function at Arguments do not need to be named. The length of each
argument corresponds to the number of points to evaluate, the number of arguments corre-
sponds to the number of variables in the distribution. See examples.

log (logical(1))
If TRUE returns the logarithm of the probabilities. Default is FALSE.

simplify logical(1)
If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

data array
Alternative method to specify points to evaluate. If univariate then rows correspond with
number of points to evaluate and columns correspond with number of variables to evalu-
ate. In the special case of VectorDistributions of multivariate distributions, then the third
dimension corresponds to the distribution in the vector to evaluate.

Method cumHazard(): The cumulative hazard function is defined analytically by

HX(x) = −log(SX)

where X is the distribution and SX is the survival function.

Usage:
ExoticStatistics$cumHazard(..., log = FALSE, simplify = TRUE, data = NULL)

Arguments:
... (numeric())

Points to evaluate the function at Arguments do not need to be named. The length of each
argument corresponds to the number of points to evaluate, the number of arguments corre-
sponds to the number of variables in the distribution. See examples.

log (logical(1))
If TRUE returns the logarithm of the probabilities. Default is FALSE.

100 ExoticStatistics

simplify logical(1)
If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

data array
Alternative method to specify points to evaluate. If univariate then rows correspond with
number of points to evaluate and columns correspond with number of variables to evalu-
ate. In the special case of VectorDistributions of multivariate distributions, then the third
dimension corresponds to the distribution in the vector to evaluate.

Method cdfPNorm(): The p-norm of the cdf is defined by

(

∫ b

a

|FX |pdµ)1/p

where X is the distribution, FX is the cdf and a, b are the lower and upper limits of integration.
Returns NULL if distribution is not continuous.

Usage:
ExoticStatistics$cdfPNorm(p = 2, lower = NULL, upper = NULL)

Arguments:
p (integer(1)) Norm to evaluate.
lower (numeric(1)

Lower bounds of integral.
upper (numeric(1)

Upper bounds of integral.

Method pdfPNorm(): The p-norm of the pdf is defined by

(

∫ b

a

|fX |pdµ)1/p

where X is the distribution, fX is the pdf and a, b are the lower and upper limits of integration.
Returns NULL if distribution is not continuous.

Usage:
ExoticStatistics$pdfPNorm(p = 2, lower = NULL, upper = NULL)

Arguments:
p (integer(1)) Norm to evaluate.
lower (numeric(1)

Lower bounds of integral.
upper (numeric(1)

Upper bounds of integral.

Method survivalPNorm(): The p-norm of the survival function is defined by

(

∫ b

a

|SX |pdµ)1/p

where X is the distribution, SX is the survival function and a, b are the lower and upper limits of
integration.
Returns NULL if distribution is not continuous.

Exponential 101

Usage:
ExoticStatistics$survivalPNorm(p = 2, lower = NULL, upper = NULL)

Arguments:

p (integer(1)) Norm to evaluate.
lower (numeric(1)

Lower bounds of integral.
upper (numeric(1)

Upper bounds of integral.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ExoticStatistics$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other decorators: CoreStatistics, FunctionImputation

Examples

decorate(Exponential$new(), "ExoticStatistics")
Exponential$new(decorators = "ExoticStatistics")
ExoticStatistics$new()$decorate(Exponential$new())

Exponential Exponential Distribution Class

Description

Mathematical and statistical functions for the Exponential distribution, which is commonly used to
model inter-arrival times in a Poisson process and has the memoryless property.

Details

The Exponential distribution parameterised with rate, λ, is defined by the pdf,

f(x) = λexp(−xλ)

for λ > 0.

Value

Returns an R6 object inheriting from class SDistribution.

102 Exponential

Distribution support

The distribution is supported on the Positive Reals.

Default Parameterisation

Exp(rate = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Exponential

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:
• Exponential$new()

• Exponential$mean()

• Exponential$mode()

• Exponential$median()

• Exponential$variance()

• Exponential$skewness()

• Exponential$kurtosis()

• Exponential$entropy()

• Exponential$mgf()

• Exponential$cf()

• Exponential$pgf()

• Exponential$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Exponential$new(rate = NULL, scale = NULL, decorators = NULL)

Arguments:

Exponential 103

rate (numeric(1))
Rate parameter of the distribution, defined on the positive Reals.

scale numeric(1))
Scale parameter of the distribution, defined on the positive Reals. scale = 1/rate. If
provided rate is ignored.

decorators (character())
Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Exponential$mean(...)

Arguments:

... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Exponential$mode(which = "all")

Arguments:

which (character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method median(): Returns the median of the distribution. If an analytical expression is avail-
able returns distribution median, otherwise if symmetric returns self$mean, otherwise returns
self$quantile(0.5).

Usage:
Exponential$median()

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Exponential$variance(...)

Arguments:

... Unused.

104 Exponential

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Exponential$skewness(...)

Arguments:

... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Exponential$kurtosis(excess = TRUE, ...)

Arguments:

excess (logical(1))
If TRUE (default) excess kurtosis returned.

... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Exponential$entropy(base = 2, ...)

Arguments:

base (integer(1))
Base of the entropy logarithm, default = 2 (Shannon entropy)

... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Exponential$mgf(t, ...)

Arguments:

Exponential 105

t (integer(1))
t integer to evaluate function at.

... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Exponential$cf(t, ...)

Arguments:

t (integer(1))
t integer to evaluate function at.

... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Exponential$pgf(z, ...)

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Exponential$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, FDistributionNoncentral, FDistribution, Frechet, Gamma,
Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

106 FDistribution

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel,
Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

FDistribution ’F’ Distribution Class

Description

Mathematical and statistical functions for the ’F’ distribution, which is commonly used in ANOVA
testing and is the ratio of scaled Chi-Squared distributions..

Details

The ’F’ distribution parameterised with two degrees of freedom parameters, µ, ν, is defined by the
pdf,

f(x) = Γ((µ+ ν)/2)/(Γ(µ/2)Γ(ν/2))(µ/ν)µ/2xµ/2−1(1 + (µ/ν)x)−(µ+ν)/2

for µ, ν > 0.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Positive Reals.

Default Parameterisation

F(df1 = 1, df2 = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> FDistribution

FDistribution 107

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:
• FDistribution$new()

• FDistribution$mean()

• FDistribution$mode()

• FDistribution$variance()

• FDistribution$skewness()

• FDistribution$kurtosis()

• FDistribution$entropy()

• FDistribution$mgf()

• FDistribution$pgf()

• FDistribution$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
FDistribution$new(df1 = NULL, df2 = NULL, decorators = NULL)

Arguments:
df1 (numeric(1))

First degree of freedom of the distribution defined on the positive Reals.
df2 (numeric(1))

Second degree of freedom of the distribution defined on the positive Reals.
decorators (character())

Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
FDistribution$mean(...)

Arguments:
... Unused.

108 FDistribution

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
FDistribution$mode(which = "all")

Arguments:

which (character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
FDistribution$variance(...)

Arguments:

... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
FDistribution$skewness(...)

Arguments:

... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
FDistribution$kurtosis(excess = TRUE, ...)

Arguments:

excess (logical(1))
If TRUE (default) excess kurtosis returned.

... Unused.

FDistribution 109

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
FDistribution$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
FDistribution$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
FDistribution$pgf(z, ...)

Arguments:
z (integer(1))

z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FDistribution$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

110 FDistributionNoncentral

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, Frechet, Gamma,
Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric,
InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull, WeightedDiscrete

FDistributionNoncentral

Noncentral F Distribution Class

Description

Mathematical and statistical functions for the Noncentral F distribution, which is commonly used
in ANOVA testing and is the ratio of scaled Chi-Squared distributions.

Details

The Noncentral F distribution parameterised with two degrees of freedom parameters, µ, ν, and
location, λ, # nolint is defined by the pdf,

f(x) =

∞∑
r=0

((exp(−λ/2)(λ/2)r)/(B(ν/2, µ/2+r)r!))(µ/ν)µ/2+r(ν/(ν+xµ))(µ+ν)/2+rxµ/2−1+r

for µ, ν > 0, λ ≥ 0.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Positive Reals.

Default Parameterisation

FNC(df1 = 1, df2 = 1, location = 0)

Omitted Methods

N/A

FDistributionNoncentral 111

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> FDistributionNoncentral

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

• FDistributionNoncentral$new()

• FDistributionNoncentral$mean()

• FDistributionNoncentral$variance()

• FDistributionNoncentral$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
FDistributionNoncentral$new(
df1 = NULL,
df2 = NULL,
location = NULL,
decorators = NULL

)

Arguments:

df1 (numeric(1))
First degree of freedom of the distribution defined on the positive Reals.

df2 (numeric(1))
Second degree of freedom of the distribution defined on the positive Reals.

location (numeric(1))
Location parameter, defined on the Reals.

decorators (character())
Decorators to add to the distribution during construction.

112 FDistributionNoncentral

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.
Usage:
FDistributionNoncentral$mean(...)

Arguments:
... Unused.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
FDistributionNoncentral$variance(...)

Arguments:
... Unused.

Method clone(): The objects of this class are cloneable with this method.
Usage:
FDistributionNoncentral$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Jordan Deenichin

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistribution, Frechet, Gamma, Gompertz,
Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric,
InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull, WeightedDiscrete

Frechet 113

Frechet Frechet Distribution Class

Description

Mathematical and statistical functions for the Frechet distribution, which is commonly used as a
special case of the Generalised Extreme Value distribution.

Details

The Frechet distribution parameterised with shape, α, scale, β, and minimum, γ, is defined by the
pdf,

f(x) = (α/β)((x− γ)/β)−1−αexp(−(x− γ)/β)−α

for α, βεR+ and γεR.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on x > γ.

Default Parameterisation

Frec(shape = 1, scale = 1, minimum = 0)

Omitted Methods

N/A

Also known as

Also known as the Inverse Weibull distribution.

Super classes

distr6::Distribution -> distr6::SDistribution -> Frechet

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

114 Frechet

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:
• Frechet$new()

• Frechet$mean()

• Frechet$mode()

• Frechet$median()

• Frechet$variance()

• Frechet$skewness()

• Frechet$kurtosis()

• Frechet$entropy()

• Frechet$pgf()

• Frechet$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Frechet$new(shape = NULL, scale = NULL, minimum = NULL, decorators = NULL)

Arguments:

shape (numeric(1))
Shape parameter, defined on the positive Reals.

scale (numeric(1))
Scale parameter, defined on the positive Reals.

minimum (numeric(1))
Minimum of the distribution, defined on the Reals.

decorators (character())
Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Frechet$mean(...)

Arguments:

... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Frechet$mode(which = "all")

Frechet 115

Arguments:

which (character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method median(): Returns the median of the distribution. If an analytical expression is avail-
able returns distribution median, otherwise if symmetric returns self$mean, otherwise returns
self$quantile(0.5).

Usage:
Frechet$median()

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Frechet$variance(...)

Arguments:

... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Frechet$skewness(...)

Arguments:

... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Frechet$kurtosis(excess = TRUE, ...)

Arguments:

excess (logical(1))
If TRUE (default) excess kurtosis returned.

... Unused.

116 Frechet

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.
Usage:
Frechet$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.
Usage:
Frechet$pgf(z, ...)

Arguments:
z (integer(1))

z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.
Usage:
Frechet$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Gamma, Geometric, Gompertz, Gumbel,
Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

FunctionImputation 117

FunctionImputation Imputed Pdf/Cdf/Quantile/Rand Functions Decorator

Description

This decorator imputes missing pdf/cdf/quantile/rand methods from R6 Distributions by using
strategies dependent on which methods are already present in the distribution. Unlike other deco-
rators, private methods are added to the Distribution, not public methods. Therefore the underly-
ing public [Distribution]$pdf, [Distribution]$pdf, [Distribution]$quantile, and [Distribution]$rand
functions stay the same.

Details

Decorator objects add functionality to the given Distribution object by copying methods in the
decorator environment to the chosen Distribution environment.

All methods implemented in decorators try to exploit analytical results where possible, otherwise
numerical results are used with a message.

Super class

distr6::DistributionDecorator -> FunctionImputation

Public fields

packages Packages required to be installed in order to construct the distribution.

Active bindings

methods Returns the names of the available methods in this decorator.

Methods

Public methods:
• FunctionImputation$decorate()

• FunctionImputation$clone()

Method decorate(): Decorates the given distribution with the methods available in this deco-
rator.

Usage:
FunctionImputation$decorate(distribution, n = 1000)

Arguments:
distribution Distribution

Distribution to decorate.
n (integer(1))

Grid size for imputing functions, cannot be changed after decorating. Generally larger n
means better accuracy but slower computation, and smaller n means worse accuracy and
faster computation.

118 Gamma

Method clone(): The objects of this class are cloneable with this method.

Usage:
FunctionImputation$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other decorators: CoreStatistics, ExoticStatistics

Examples

if (requireNamespace("GoFKernel", quietly = TRUE) &&
requireNamespace("pracma", quietly = TRUE)) {

pdf <- function(x) ifelse(x < 1 | x > 10, 0, 1 / 10)

x <- Distribution$new("Test",
pdf = pdf,
support = set6::Interval$new(1, 10, class = "integer"),
type = set6::Naturals$new()

)
decorate(x, "FunctionImputation", n = 1000)

x <- Distribution$new("Test",
pdf = pdf,
support = set6::Interval$new(1, 10, class = "integer"),
type = set6::Naturals$new(),
decorators = "FunctionImputation"

)

x <- Distribution$new("Test",
pdf = pdf,
support = set6::Interval$new(1, 10, class = "integer"),
type = set6::Naturals$new()

)
FunctionImputation$new()$decorate(x, n = 1000)

x$pdf(1:10)
x$cdf(1:10)
x$quantile(0.42)
x$rand(4)
}

Gamma Gamma Distribution Class

Gamma 119

Description

Mathematical and statistical functions for the Gamma distribution, which is commonly used as the
prior in Bayesian modelling, the convolution of exponential distributions, and to model waiting
times.

Details

The Gamma distribution parameterised with shape, α, and rate, β, is defined by the pdf,

f(x) = (βα)/Γ(α)xα−1exp(−xβ)

for α, β > 0.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Positive Reals.

Default Parameterisation

Gamma(shape = 1, rate = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Gamma

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

120 Gamma

Methods

Public methods:
• Gamma$new()

• Gamma$mean()

• Gamma$mode()

• Gamma$variance()

• Gamma$skewness()

• Gamma$kurtosis()

• Gamma$entropy()

• Gamma$mgf()

• Gamma$cf()

• Gamma$pgf()

• Gamma$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Gamma$new(
shape = NULL,
rate = NULL,
scale = NULL,
mean = NULL,
decorators = NULL

)

Arguments:

shape (numeric(1))
Shape parameter, defined on the positive Reals.

rate (numeric(1))
Rate parameter of the distribution, defined on the positive Reals.

scale numeric(1))
Scale parameter of the distribution, defined on the positive Reals. scale = 1/rate. If
provided rate is ignored.

mean (numeric(1))
Alternative parameterisation of the distribution, defined on the positive Reals. If given then
rate and scale are ignored. Related by mean = shape/rate.

decorators (character())
Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Gamma$mean(...)

Gamma 121

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Gamma$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Gamma$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Gamma$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Gamma$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))

If TRUE (default) excess kurtosis returned.

122 Gamma

... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Gamma$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Gamma$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Gamma$cf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Gamma$pgf(z, ...)

Arguments:

generalPNorm 123

z (integer(1))
z integer to evaluate probability generating function at.

... Unused.

Method clone(): The objects of this class are cloneable with this method.
Usage:
Gamma$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Frechet, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Geometric, Gompertz, Gumbel,
Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

generalPNorm Generalised P-Norm

Description

Calculate the p-norm of any function between given limits.

Usage

generalPNorm(fun, p, lower, upper, range = NULL)

Arguments

fun function to calculate the p-norm of.
p the pth norm to calculate
lower lower bound for the integral
upper upper bound for the integral
range if discrete then range of the function to sum over

124 Geometric

Details

The p-norm of a continuous function f is given by,

(

∫
S

|f |pdµ)1/p

where S is the function support. And for a discrete function by∑
i

(xi+1 − xi) ∗ |f(xi)|p

where i is over a given range.

The p-norm is calculated numerically using the integrate function and therefore results are ap-
proximate only.

Value

Returns a numeric value for the p norm of a function evaluated between given limits.

Examples

generalPNorm(Exponential$new()$pdf, 2, 0, 10)

Geometric Geometric Distribution Class

Description

Mathematical and statistical functions for the Geometric distribution, which is commonly used to
model the number of trials (or number of failures) before the first success.

Details

The Geometric distribution parameterised with probability of success, p, is defined by the pmf,

f(x) = (1− p)k−1p

for probability p.

The Geometric distribution is used to either model the number of trials (trials = TRUE) or number
of failures (trials = FALSE) before the first success.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Naturals (zero is included if modelling number of failures
before success).

Geometric 125

Default Parameterisation

Geom(prob = 0.5, trials = FALSE)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Geometric

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:
• Geometric$new()

• Geometric$mean()

• Geometric$mode()

• Geometric$variance()

• Geometric$skewness()

• Geometric$kurtosis()

• Geometric$entropy()

• Geometric$mgf()

• Geometric$cf()

• Geometric$pgf()

• Geometric$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Geometric$new(prob = NULL, qprob = NULL, trials = NULL, decorators = NULL)

Arguments:

prob (numeric(1))
Probability of success.

qprob (numeric(1))
Probability of failure. If provided then prob is ignored. qprob = 1 -prob.

126 Geometric

trials (logical(1))
If TRUE then the distribution models the number of trials, x, before the first success. Other-
wise the distribution calculates the probability of y failures before the first success. Mathe-
matically these are related by Y = X − 1.

decorators (character())
Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Geometric$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Geometric$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Geometric$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Geometric$skewness(...)

Arguments:

Geometric 127

... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Geometric$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))

If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Geometric$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Geometric$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Geometric$cf(t, ...)

128 Geometric

Arguments:

t (integer(1))
t integer to evaluate function at.

... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:

Geometric$pgf(z, ...)

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:

Geometric$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other discrete distributions: Bernoulli, Binomial, Categorical, Degenerate, DiscreteUniform,
EmpiricalMV, Empirical, Hypergeometric, Logarithmic, Multinomial, NegativeBinomial,
WeightedDiscrete

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel,
Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

Gompertz 129

Gompertz Gompertz Distribution Class

Description

Mathematical and statistical functions for the Gompertz distribution, which is commonly used in
survival analysis particularly to model adult mortality rates..

Details

The Gompertz distribution parameterised with shape, α, and scale, β, is defined by the pdf,

f(x) = αβexp(xβ)exp(α)exp(−exp(xβ)α)

for α, β > 0.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Non-Negative Reals.

Default Parameterisation

Gomp(shape = 1, scale = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Gompertz

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

130 Gompertz

Methods

Public methods:
• Gompertz$new()

• Gompertz$median()

• Gompertz$pgf()

• Gompertz$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Gompertz$new(shape = NULL, scale = NULL, decorators = NULL)

Arguments:
shape (numeric(1))

Shape parameter, defined on the positive Reals.
scale (numeric(1))

Scale parameter, defined on the positive Reals.
decorators (character())

Decorators to add to the distribution during construction.

Method median(): Returns the median of the distribution. If an analytical expression is avail-
able returns distribution median, otherwise if symmetric returns self$mean, otherwise returns
self$quantile(0.5).

Usage:
Gompertz$median()

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Gompertz$pgf(z, ...)

Arguments:
z (integer(1))

z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Gompertz$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

Gumbel 131

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Frechet, Gamma, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gumbel,
Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

Gumbel Gumbel Distribution Class

Description

Mathematical and statistical functions for the Gumbel distribution, which is commonly used to
model the maximum (or minimum) of a number of samples of different distributions, and is a
special case of the Generalised Extreme Value distribution.

Details

The Gumbel distribution parameterised with location, µ, and scale, β, is defined by the pdf,

f(x) = exp(−(z + exp(−z)))/β

for z = (x− µ)/β, µεR and β > 0.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Reals.

Default Parameterisation

Gumb(location = 0, scale = 1)

Omitted Methods

N/A

132 Gumbel

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Gumbel

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:
• Gumbel$new()

• Gumbel$mean()

• Gumbel$mode()

• Gumbel$median()

• Gumbel$variance()

• Gumbel$skewness()

• Gumbel$kurtosis()

• Gumbel$entropy()

• Gumbel$mgf()

• Gumbel$cf()

• Gumbel$pgf()

• Gumbel$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Gumbel$new(location = NULL, scale = NULL, decorators = NULL)

Arguments:
location (numeric(1))

Location parameter defined on the Reals.
scale (numeric(1))

Scale parameter defined on the positive Reals.
decorators (character())

Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Gumbel 133

Usage:
Gumbel$mean(...)

Arguments:

... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Gumbel$mode(which = "all")

Arguments:

which (character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method median(): Returns the median of the distribution. If an analytical expression is avail-
able returns distribution median, otherwise if symmetric returns self$mean, otherwise returns
self$quantile(0.5).

Usage:
Gumbel$median()

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Gumbel$variance(...)

Arguments:

... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.
Apery’s Constant to 16 significant figures is used in the calculation.

Usage:
Gumbel$skewness(...)

Arguments:

... Unused.

134 Gumbel

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Gumbel$kurtosis(excess = TRUE, ...)

Arguments:

excess (logical(1))
If TRUE (default) excess kurtosis returned.

... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Gumbel$entropy(base = 2, ...)

Arguments:

base (integer(1))
Base of the entropy logarithm, default = 2 (Shannon entropy)

... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Gumbel$mgf(t, ...)

Arguments:

t (integer(1))
t integer to evaluate function at.

... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.
pracma::gammaz() is used in this function to allow complex inputs.

Usage:
Gumbel$cf(t, ...)

Gumbel 135

Arguments:

t (integer(1))
t integer to evaluate function at.

... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Gumbel$pgf(z, ...)

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Gumbel$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Frechet, Gamma, Gompertz, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

136 HuberizedDistribution

huberize Huberize a Distribution

Description

S3 functionality to huberize an R6 distribution.

Usage

huberize(x, lower, upper)

Arguments

x distribution to huberize.

lower lower limit for huberization.

upper upper limit for huberization.

See Also

HuberizedDistribution

HuberizedDistribution Distribution Huberization Wrapper

Description

A wrapper for huberizing any probability distribution at given limits.

Details

The pdf and cdf of the distribution are required for this wrapper, if unavailable decorate with Func-
tionImputation first.

Huberizes a distribution at lower and upper limits, using the formula

fH(x) = F (x), ifx ≤ lower

fH(x) = f(x), if lower < x < upper

fH(x) = F (x), ifx ≥ upper

where f_H is the pdf of the truncated distribution H = Huberize(X, lower, upper) and fX /FX is the
pdf/cdf of the original distribution.

Super classes

distr6::Distribution -> distr6::DistributionWrapper -> HuberizedDistribution

HuberizedDistribution 137

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

• HuberizedDistribution$new()

• HuberizedDistribution$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

HuberizedDistribution$new(distribution, lower = NULL, upper = NULL)

Arguments:

distribution ([Distribution])
Distribution to wrap.

lower (numeric(1))
Lower limit to huberize the distribution at. If NULL then the lower bound of the Distribution
is used.

upper (numeric(1))
Upper limit to huberize the distribution at. If NULL then the upper bound of the Distribution
is used.

Examples:

HuberizedDistribution$new(
Binomial$new(prob = 0.5, size = 10),
lower = 2, upper = 4

)

alternate constructor
huberize(Binomial$new(), lower = 2, upper = 4)

Method clone(): The objects of this class are cloneable with this method.

Usage:

HuberizedDistribution$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other wrappers: Convolution, DistributionWrapper, MixtureDistribution, ProductDistribution,
TruncatedDistribution, VectorDistribution

138 Hypergeometric

Examples

--
Method `HuberizedDistribution$new`
--

HuberizedDistribution$new(
Binomial$new(prob = 0.5, size = 10),
lower = 2, upper = 4

)

alternate constructor
huberize(Binomial$new(), lower = 2, upper = 4)

Hypergeometric Hypergeometric Distribution Class

Description

Mathematical and statistical functions for the Hypergeometric distribution, which is commonly
used to model the number of successes out of a population containing a known number of possible
successes, for example the number of red balls from an urn or red, blue and yellow balls.

Details

The Hypergeometric distribution parameterised with population size, N , number of possible suc-
cesses, K, and number of draws from the distribution, n, is defined by the pmf,

f(x) = C(K,x)C(N −K,n− x)/C(N,n)

for N = {0, 1, 2, . . .}, n,K = {0, 1, 2, . . . , N} and C(a, b) is the combination (or binomial coeffi-
cient) function.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on {max(0, n+K −N), ...,min(n,K)}.

Default Parameterisation

Hyper(size = 50, successes = 5, draws = 10)

Omitted Methods

N/A

Hypergeometric 139

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Hypergeometric

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

• Hypergeometric$new()

• Hypergeometric$mean()

• Hypergeometric$mode()

• Hypergeometric$variance()

• Hypergeometric$skewness()

• Hypergeometric$kurtosis()

• Hypergeometric$setParameterValue()

• Hypergeometric$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Hypergeometric$new(
size = NULL,
successes = NULL,
failures = NULL,
draws = NULL,
decorators = NULL

)

Arguments:

size (integer(1))
Population size. Defined on positive Naturals.

successes (integer(1))
Number of population successes. Defined on positive Naturals.

140 Hypergeometric

failures (integer(1))
Number of population failures. failures = size -successes. If given then successes is
ignored. Defined on positive Naturals.

draws (integer(1))
Number of draws from the distribution, defined on the positive Naturals.

decorators (character())
Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Hypergeometric$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Hypergeometric$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Hypergeometric$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Hypergeometric$skewness(...)

Hypergeometric 141

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Hypergeometric$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))

If TRUE (default) excess kurtosis returned.
... Unused.

Method setParameterValue(): Sets the value(s) of the given parameter(s).

Usage:
Hypergeometric$setParameterValue(
...,
lst = list(...),
error = "warn",
resolveConflicts = FALSE

)

Arguments:
... ANY

Named arguments of parameters to set values for. See examples.
lst (list(1))

Alternative argument for passing parameters. List names should be parameter names and
list values are the new values to set.

error (character(1))
If "warn" then returns a warning on error, otherwise breaks if "stop".

resolveConflicts (logical(1))
If FALSE (default) throws error if conflicting parameterisations are provided, otherwise au-
tomatically resolves them by removing all conflicting parameters.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Hypergeometric$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

142 InverseGamma

See Also

Other discrete distributions: Bernoulli, Binomial, Categorical, Degenerate, DiscreteUniform,
EmpiricalMV, Empirical, Geometric, Logarithmic, Multinomial, NegativeBinomial, WeightedDiscrete

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull, WeightedDiscrete

InverseGamma Inverse Gamma Distribution Class

Description

Mathematical and statistical functions for the Inverse Gamma distribution, which is commonly
used in Bayesian statistics as the posterior distribution from the unknown variance in a Normal
distribution.

Details

The Inverse Gamma distribution parameterised with shape, α, and scale, β, is defined by the pdf,

f(x) = (βα)/Γ(α)x−α−1exp(−β/x)

for α, β > 0, where Γ is the gamma function.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Positive Reals.

Default Parameterisation

InvGamma(shape = 1, scale = 1)

Omitted Methods

N/A

Also known as

N/A

InverseGamma 143

Super classes

distr6::Distribution -> distr6::SDistribution -> InverseGamma

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:
• InverseGamma$new()

• InverseGamma$mean()

• InverseGamma$mode()

• InverseGamma$variance()

• InverseGamma$skewness()

• InverseGamma$kurtosis()

• InverseGamma$entropy()

• InverseGamma$mgf()

• InverseGamma$pgf()

• InverseGamma$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
InverseGamma$new(shape = NULL, scale = NULL, decorators = NULL)

Arguments:
shape (numeric(1))

Shape parameter, defined on the positive Reals.
scale (numeric(1))

Scale parameter, defined on the positive Reals.
decorators (character())

Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
InverseGamma$mean(...)

Arguments:
... Unused.

144 InverseGamma

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
InverseGamma$mode(which = "all")

Arguments:

which (character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
InverseGamma$variance(...)

Arguments:

... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
InverseGamma$skewness(...)

Arguments:

... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
InverseGamma$kurtosis(excess = TRUE, ...)

Arguments:

excess (logical(1))
If TRUE (default) excess kurtosis returned.

... Unused.

InverseGamma 145

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
InverseGamma$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
InverseGamma$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
InverseGamma$pgf(z, ...)

Arguments:
z (integer(1))

z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
InverseGamma$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

146 Kernel

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Frechet, Gamma, Gompertz, Gumbel, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, Hypergeometric, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull, WeightedDiscrete

Kernel Abstract Kernel Class

Description

Abstract class that cannot be constructed directly.

Value

Returns error. Abstract classes cannot be constructed directly.

Super class

distr6::Distribution -> Kernel

Public fields

package Deprecated, use $packages instead.

packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:
• Kernel$new()

• Kernel$mode()

• Kernel$mean()

• Kernel$median()

• Kernel$pdfSquared2Norm()

• Kernel$cdfSquared2Norm()

• Kernel$skewness()

• Kernel$clone()

Method new(): Creates a new instance of this R6 class.

Kernel 147

Usage:
Kernel$new(decorators = NULL, support = Interval$new(-1, 1))

Arguments:
decorators (character())

Decorators to add to the distribution during construction.
support [set6::Set]

Support of the distribution.

Method mode(): Calculates the mode of the distribution.

Usage:
Kernel$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method mean(): Calculates the mean (expectation) of the distribution.

Usage:
Kernel$mean(...)

Arguments:
... Unused.

Method median(): Calculates the median of the distribution.

Usage:
Kernel$median()

Method pdfSquared2Norm(): The squared 2-norm of the pdf is defined by∫ b

a

(fX(u))2du

where X is the Distribution, fX is its pdf and a, b are the distribution support limits.

Usage:
Kernel$pdfSquared2Norm(x = 0, upper = Inf)

Arguments:
x (numeric(1))

Amount to shift the result.
upper (numeric(1))

Upper limit of the integral.

Method cdfSquared2Norm(): The squared 2-norm of the cdf is defined by∫ b

a

(FX(u))2du

where X is the Distribution, FX is its pdf and a, b are the distribution support limits.

148 Laplace

Usage:
Kernel$cdfSquared2Norm(x = 0, upper = Inf)

Arguments:

x (numeric(1))
Amount to shift the result.

upper (numeric(1))
Upper limit of the integral.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Kernel$skewness(...)

Arguments:

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Kernel$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Laplace Laplace Distribution Class

Description

Mathematical and statistical functions for the Laplace distribution, which is commonly used in
signal processing and finance.

Details

The Laplace distribution parameterised with mean, µ, and scale, β, is defined by the pdf,

f(x) = exp(−|x− µ|/β)/(2β)

for µεR and β > 0.

Value

Returns an R6 object inheriting from class SDistribution.

Laplace 149

Distribution support

The distribution is supported on the Reals.

Default Parameterisation

Lap(mean = 0, scale = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Laplace

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:

• Laplace$new()

• Laplace$mean()

• Laplace$mode()

• Laplace$variance()

• Laplace$skewness()

• Laplace$kurtosis()

• Laplace$entropy()

• Laplace$mgf()

• Laplace$cf()

• Laplace$pgf()

• Laplace$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Laplace$new(mean = NULL, scale = NULL, var = NULL, decorators = NULL)

Arguments:

150 Laplace

mean (numeric(1))
Mean of the distribution, defined on the Reals.

scale (numeric(1))
Scale parameter, defined on the positive Reals.

var (numeric(1))
Variance of the distribution, defined on the positive Reals. var = 2*scale^2. If var is
provided then scale is ignored.

decorators (character())
Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Laplace$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Laplace$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Laplace$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Laplace 151

Usage:
Laplace$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Laplace$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))

If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Laplace$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Laplace$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

152 Laplace

Usage:
Laplace$cf(t, ...)

Arguments:

t (integer(1))
t integer to evaluate function at.

... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Laplace$pgf(z, ...)

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Laplace$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Logistic, Loglogistic, Lognormal, MultivariateNormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, Hypergeometric, InverseGamma, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

length.VectorDistribution 153

length.VectorDistribution

Get Number of Distributions in Vector Distribution

Description

Gets the number of distributions in an object inheriting from VectorDistribution.

Usage

S3 method for class 'VectorDistribution'
length(x)

Arguments

x VectorDistribution

lines.Distribution Superimpose Distribution Functions Plots for a distr6 Object

Description

One of six plots can be selected to be superimposed in the plotting window, including: pdf, cdf,
quantile, survival, hazard and cumulative hazard.

Usage

S3 method for class 'Distribution'
lines(x, fun, npoints = 3000, ...)

Arguments

x distr6 object.

fun vector of functions to plot, one or more of: "pdf","cdf","quantile", "survival",
"hazard", and "cumhazard"; partial matching available.

npoints number of evaluation points.

... graphical parameters.

Details

Unlike the plot.Distribution function, no internal checks are performed to ensure that the added
plot makes sense in the context of the current plotting window. Therefore this function assumes that
the current plot is of the same value support, see examples.

154 listDecorators

Author(s)

Chengyang Gao, Runlong Yu and Shuhan Liu

See Also

plot.Distribution for plotting a distr6 object.

Examples

plot(Normal$new(mean = 2), "pdf")
lines(Normal$new(mean = 3), "pdf", col = "red", lwd = 2)

Not run:
The code below gives examples of how not to use this function.
Different value supports
plot(Binomial$new(), "cdf")
lines(Normal$new(), "cdf")

Different functions
plot(Binomial$new(), "pdf")
lines(Binomial$new(), "cdf")

Too many functions
plot(Binomial$new(), c("pdf", "cdf"))
lines(Binomial$new(), "cdf")

End(Not run)

listDecorators Lists Implemented Distribution Decorators

Description

Lists decorators that can decorate an R6 Distribution.

Usage

listDecorators(simplify = TRUE)

Arguments

simplify logical. If TRUE (default) returns results as characters, otherwise as R6 classes.

Value

Either a list of characters (if simplify is TRUE) or a list of DistributionDecorator classes.

listDistributions 155

See Also

DistributionDecorator

Examples

listDecorators()
listDecorators(FALSE)

listDistributions Lists Implemented Distributions

Description

Lists distr6 distributions in a data.table or a character vector, can be filtered by traits, implemented
package, and tags.

Usage

listDistributions(simplify = FALSE, filter = NULL)

Arguments

simplify logical. If FALSE (default) returns distributions with traits as a data.table, oth-
erwise returns distribution names as characters.

filter list to filter distributions by. See examples.

Value

Either a list of characters (if simplify is TRUE) or a data.table of SDistributions and their traits.

See Also

SDistribution

Examples

listDistributions()

Filter list
listDistributions(filter = list(VariateForm = "univariate"))

Filter is case-insensitive
listDistributions(filter = list(VaLuESupport = "discrete"))

Multiple filters
listDistributions(filter = list(VaLuESupport = "discrete", package = "extraDistr"))

156 listWrappers

listKernels Lists Implemented Kernels

Description

Lists all implemented kernels in distr6.

Usage

listKernels(simplify = FALSE)

Arguments

simplify logical. If FALSE (default) returns kernels with support as a data.table, other-
wise returns kernel names as characters.

Value

Either a list of characters (if simplify is TRUE) or a data.table of Kernels and their traits.

See Also

Kernel

Examples

listKernels()

listWrappers Lists Implemented Distribution Wrappers

Description

Lists wrappers that can wrap an R6 Distribution.

Usage

listWrappers(simplify = TRUE)

Arguments

simplify logical. If TRUE (default) returns results as characters, otherwise as R6 classes.

Value

Either a list of characters (if simplify is TRUE) or a list of Wrapper classes.

Logarithmic 157

See Also

DistributionWrapper

Examples

listWrappers()
listWrappers(TRUE)

Logarithmic Logarithmic Distribution Class

Description

Mathematical and statistical functions for the Logarithmic distribution, which is commonly used to
model consumer purchase habits in economics and is derived from the Maclaurin series expansion
of −ln(1− p).

Details

The Logarithmic distribution parameterised with a parameter, θ, is defined by the pmf,

f(x) = −θx/xlog(1− θ)

for 0 < θ < 1.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on 1, 2, 3,

Default Parameterisation

Log(theta = 0.5)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Logarithmic

158 Logarithmic

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:
• Logarithmic$new()

• Logarithmic$mean()

• Logarithmic$mode()

• Logarithmic$variance()

• Logarithmic$skewness()

• Logarithmic$kurtosis()

• Logarithmic$mgf()

• Logarithmic$cf()

• Logarithmic$pgf()

• Logarithmic$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Logarithmic$new(theta = NULL, decorators = NULL)

Arguments:

theta (numeric(1))
Theta parameter defined as a probability between 0 and 1.

decorators (character())
Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Logarithmic$mean(...)

Arguments:

... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Logarithmic$mode(which = "all")

Logarithmic 159

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Logarithmic$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Logarithmic$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Logarithmic$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))

If TRUE (default) excess kurtosis returned.
... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:

160 Logarithmic

Logarithmic$mgf(t, ...)

Arguments:

t (integer(1))
t integer to evaluate function at.

... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:

Logarithmic$cf(t, ...)

Arguments:

t (integer(1))
t integer to evaluate function at.

... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:

Logarithmic$pgf(z, ...)

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:

Logarithmic$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

Logistic 161

See Also

Other discrete distributions: Bernoulli, Binomial, Categorical, Degenerate, DiscreteUniform,
EmpiricalMV, Empirical, Geometric, Hypergeometric, Multinomial, NegativeBinomial, WeightedDiscrete

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, Hypergeometric, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, NegativeBinomial,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull, WeightedDiscrete

Logistic Logistic Distribution Class

Description

Mathematical and statistical functions for the Logistic distribution, which is commonly used in
logistic regression and feedforward neural networks.

Details

The Logistic distribution parameterised with mean, µ, and scale, s, is defined by the pdf,

f(x) = exp(−(x− µ)/s)/(s(1 + exp(−(x− µ)/s))2)

for µεR and s > 0.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Reals.

Default Parameterisation

Logis(mean = 0, scale = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Logistic

162 Logistic

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:
• Logistic$new()

• Logistic$mean()

• Logistic$mode()

• Logistic$variance()

• Logistic$skewness()

• Logistic$kurtosis()

• Logistic$entropy()

• Logistic$mgf()

• Logistic$cf()

• Logistic$pgf()

• Logistic$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Logistic$new(mean = NULL, scale = NULL, sd = NULL, decorators = NULL)

Arguments:

mean (numeric(1))
Mean of the distribution, defined on the Reals.

scale (numeric(1))
Scale parameter, defined on the positive Reals.

sd (numeric(1))
Standard deviation of the distribution as an alternate scale parameter, sd = scale*pi/sqrt(3).
If given then scale is ignored.

decorators (character())
Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Logistic$mean(...)

Arguments:

Logistic 163

... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Logistic$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Logistic$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Logistic$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Logistic$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))

If TRUE (default) excess kurtosis returned.
... Unused.

164 Logistic

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Logistic$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Logistic$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Logistic$cf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Logistic$pgf(z, ...)

Arguments:
z (integer(1))

z integer to evaluate probability generating function at.

LogisticKernel 165

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Logistic$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Loglogistic, Lognormal, MultivariateNormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

LogisticKernel Logistic Kernel

Description

Mathematical and statistical functions for the LogisticKernel kernel defined by the pdf,

f(x) = (exp(x) + 2 + exp(−x))−1

over the support x ∈ R.

Super classes

distr6::Distribution -> distr6::Kernel -> LogisticKernel

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

166 LogisticKernel

Methods

Public methods:

• LogisticKernel$new()

• LogisticKernel$pdfSquared2Norm()

• LogisticKernel$cdfSquared2Norm()

• LogisticKernel$variance()

• LogisticKernel$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
LogisticKernel$new(decorators = NULL)

Arguments:

decorators (character())
Decorators to add to the distribution during construction.

Method pdfSquared2Norm(): The squared 2-norm of the pdf is defined by∫ b

a

(fX(u))2du

where X is the Distribution, fX is its pdf and a, b are the distribution support limits.

Usage:
LogisticKernel$pdfSquared2Norm(x = 0, upper = Inf)

Arguments:

x (numeric(1))
Amount to shift the result.

upper (numeric(1))
Upper limit of the integral.

Method cdfSquared2Norm(): The squared 2-norm of the cdf is defined by∫ b

a

(FX(u))2du

where X is the Distribution, FX is its pdf and a, b are the distribution support limits.

Usage:
LogisticKernel$cdfSquared2Norm(x = 0, upper = 0)

Arguments:

x (numeric(1))
Amount to shift the result.

upper (numeric(1))
Upper limit of the integral.

Loglogistic 167

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
LogisticKernel$variance(...)

Arguments:

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
LogisticKernel$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other kernels: Cosine, Epanechnikov, NormalKernel, Quartic, Sigmoid, Silverman, TriangularKernel,
Tricube, Triweight, UniformKernel

Loglogistic Log-Logistic Distribution Class

Description

Mathematical and statistical functions for the Log-Logistic distribution, which is commonly used
in survival analysis for its non-monotonic hazard as well as in economics.

Details

The Log-Logistic distribution parameterised with shape, β, and scale, α is defined by the pdf,

f(x) = (β/α)(x/α)β−1(1 + (x/α)β)−2

for α, β > 0.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the non-negative Reals.

168 Loglogistic

Default Parameterisation

LLogis(scale = 1, shape = 1)

Omitted Methods

N/A

Also known as

Also known as the Fisk distribution.

Super classes

distr6::Distribution -> distr6::SDistribution -> Loglogistic

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:
• Loglogistic$new()

• Loglogistic$mean()

• Loglogistic$mode()

• Loglogistic$median()

• Loglogistic$variance()

• Loglogistic$skewness()

• Loglogistic$kurtosis()

• Loglogistic$pgf()

• Loglogistic$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Loglogistic$new(scale = NULL, shape = NULL, rate = NULL, decorators = NULL)

Arguments:

scale (numeric(1))
Scale parameter, defined on the positive Reals.

shape (numeric(1))
Shape parameter, defined on the positive Reals.

rate (numeric(1))
Alternate scale parameter, rate = 1/scale. If given then scale is ignored.

Loglogistic 169

decorators (character())
Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Loglogistic$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Loglogistic$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method median(): Returns the median of the distribution. If an analytical expression is avail-
able returns distribution median, otherwise if symmetric returns self$mean, otherwise returns
self$quantile(0.5).

Usage:
Loglogistic$median()

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Loglogistic$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:

170 Loglogistic

Loglogistic$skewness(...)

Arguments:

... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:

Loglogistic$kurtosis(excess = TRUE, ...)

Arguments:

excess (logical(1))
If TRUE (default) excess kurtosis returned.

... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:

Loglogistic$pgf(z, ...)

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:

Loglogistic$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

Lognormal 171

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Lognormal, MultivariateNormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Lognormal, NegativeBinomial,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull, WeightedDiscrete

Lognormal Log-Normal Distribution Class

Description

Mathematical and statistical functions for the Log-Normal distribution, which is commonly used to
model many natural phenomena as a result of growth driven by small percentage changes.

Details

The Log-Normal distribution parameterised with logmean, µ, and logvar, σ, is defined by the pdf,

exp(−(log(x)− µ)2/2σ2)/(xσ
√

(2π))

for µεR and σ > 0.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Positive Reals.

Default Parameterisation

Lnorm(meanlog = 0, varlog = 1)

Omitted Methods

N/A

Also known as

Also known as the Log-Gaussian distribution.

172 Lognormal

Super classes

distr6::Distribution -> distr6::SDistribution -> Lognormal

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:

• Lognormal$new()

• Lognormal$mean()

• Lognormal$mode()

• Lognormal$median()

• Lognormal$variance()

• Lognormal$skewness()

• Lognormal$kurtosis()

• Lognormal$entropy()

• Lognormal$mgf()

• Lognormal$pgf()

• Lognormal$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Lognormal$new(
meanlog = NULL,
varlog = NULL,
sdlog = NULL,
preclog = NULL,
mean = NULL,
var = NULL,
sd = NULL,
prec = NULL,
decorators = NULL

)

Arguments:

meanlog (numeric(1))
Mean of the distribution on the log scale, defined on the Reals.

varlog (numeric(1))
Variance of the distribution on the log scale, defined on the positive Reals.

Lognormal 173

sdlog (numeric(1))
Standard deviation of the distribution on the log scale, defined on the positive Reals.

sdlog = varlog2

. If preclog missing and sdlog given then all other parameters except meanlog are ignored.
preclog (numeric(1))

Precision of the distribution on the log scale, defined on the positive Reals.

preclog = 1/varlog

. If given then all other parameters except meanlog are ignored.
mean (numeric(1))

Mean of the distribution on the natural scale, defined on the positive Reals.
var (numeric(1))

Variance of the distribution on the natural scale, defined on the positive Reals.

var = (exp(var)− 1)) ∗ exp(2 ∗meanlog + varlog)

sd (numeric(1))
Standard deviation of the distribution on the natural scale, defined on the positive Reals.

sd = var2

. If prec missing and sd given then all other parameters except mean are ignored.
prec (numeric(1))

Precision of the distribution on the natural scale, defined on the Reals.

prec = 1/var

. If given then all other parameters except mean are ignored.
decorators (character())

Decorators to add to the distribution during construction.

Examples:
Lognormal$new(var = 2, mean = 1)
Lognormal$new(meanlog = 2, preclog = 5)

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Lognormal$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

174 Lognormal

Usage:
Lognormal$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

... Unused.

Method median(): Returns the median of the distribution. If an analytical expression is avail-
able returns distribution median, otherwise if symmetric returns self$mean, otherwise returns
self$quantile(0.5).

Usage:
Lognormal$median()

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Lognormal$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Lognormal$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Lognormal$kurtosis(excess = TRUE, ...)

Arguments:

Lognormal 175

excess (logical(1))
If TRUE (default) excess kurtosis returned.

... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Lognormal$entropy(base = 2, ...)

Arguments:

base (integer(1))
Base of the entropy logarithm, default = 2 (Shannon entropy)

... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Lognormal$mgf(t, ...)

Arguments:

t (integer(1))
t integer to evaluate function at.

... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Lognormal$pgf(z, ...)

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Lognormal$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

176 makeUniqueDistributions

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, MultivariateNormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, NegativeBinomial,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull, WeightedDiscrete

Examples

--
Method `Lognormal$new`
--

Lognormal$new(var = 2, mean = 1)
Lognormal$new(meanlog = 2, preclog = 5)

makeUniqueDistributions

De-Duplicate Distribution Names

Description

Helper function to lapply over the given distribution list, and make the short_names unique.

Usage

makeUniqueDistributions(distlist)

Arguments

distlist list of Distributions.

Details

The short_names are made unique by suffixing each with a consecutive number so that the names
are no longer duplicated.

MixtureDistribution 177

Value

The list of inputted distributions except with the short_names manipulated as necessary to make
them unique.

Examples

makeUniqueDistributions(list(Binomial$new(), Binomial$new()))

MixtureDistribution Mixture Distribution Wrapper

Description

Wrapper used to construct a mixture of two or more distributions.

Details

A mixture distribution is defined by

FP (x) = w1FX1(x) ∗ ... ∗ wnFXN (x)

#nolint where FP is the cdf of the mixture distribution, X1, ..., XN are independent distributions,
and w1, ..., wN are weights for the mixture.

Super classes

distr6::Distribution -> distr6::DistributionWrapper -> distr6::VectorDistribution
-> MixtureDistribution

Methods

Public methods:

• MixtureDistribution$new()

• MixtureDistribution$strprint()

• MixtureDistribution$pdf()

• MixtureDistribution$cdf()

• MixtureDistribution$quantile()

• MixtureDistribution$rand()

• MixtureDistribution$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

178 MixtureDistribution

MixtureDistribution$new(
distlist = NULL,
weights = "uniform",
distribution = NULL,
params = NULL,
shared_params = NULL,
name = NULL,
short_name = NULL,
decorators = NULL,
vecdist = NULL,
ids = NULL

)

Arguments:

distlist (list())
List of Distributions.

weights (character(1)|numeric())
Weights to use in the resulting mixture. If all distributions are weighted equally then
"uniform" provides a much faster implementation, otherwise a vector of length equal to
the number of wrapped distributions, this is automatically scaled internally.

distribution (character(1))
Should be supplied with params and optionally shared_params as an alternative to distlist.
Much faster implementation when only one class of distribution is being wrapped. distribution
is the full name of one of the distributions in listDistributions(), or "Distribution"
if constructing custom distributions. See examples in VectorDistribution.

params (list()|data.frame())
Parameters in the individual distributions for use with distribution. Can be supplied as
a list, where each element is the list of parameters to set in the distribution, or as an object
coercable to data.frame, where each column is a parameter and each row is a distribution.
See examples in VectorDistribution.

shared_params (list())
If any parameters are shared when using the distribution constructor, this provides a
much faster implementation to list and query them together. See examples in VectorDistri-
bution.

name (character(1))
Optional name of wrapped distribution.

short_name (character(1))
Optional short name/ID of wrapped distribution.

decorators (character())
Decorators to add to the distribution during construction.

vecdist VectorDistribution
Alternative constructor to directly create this object from an object inheriting from Vec-
torDistribution.

ids (character())
Optional ids for wrapped distributions in vector, should be unique and of same length as the
number of distributions.

Examples:

MixtureDistribution 179

MixtureDistribution$new(list(Binomial$new(prob = 0.5, size = 10), Binomial$new()),
weights = c(0.2, 0.8)

)

Method strprint(): Printable string representation of the MixtureDistribution. Primarily
used internally.

Usage:
MixtureDistribution$strprint(n = 10)

Arguments:

n (integer(1))
Number of distributions to include when printing.

Method pdf(): Probability density function of the mixture distribution. Computed by

fM (x) =
∑
i

(fi)(x) ∗ wi

where wi is the vector of weights and fi are the pdfs of the wrapped distributions.
Note that as this class inherits from VectorDistribution, it is possible to evaluate the distributions
at different points, but that this is not the usual use-case for mixture distributions.

Usage:
MixtureDistribution$pdf(..., log = FALSE, simplify = TRUE, data = NULL)

Arguments:

... (numeric())
Points to evaluate the function at Arguments do not need to be named. The length of each
argument corresponds to the number of points to evaluate, the number of arguments corre-
sponds to the number of variables in the distribution. See examples.

log (logical(1))
If TRUE returns the logarithm of the probabilities. Default is FALSE.

simplify logical(1)
If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

data array
Alternative method to specify points to evaluate. If univariate then rows correspond with
number of points to evaluate and columns correspond with number of variables to evalu-
ate. In the special case of VectorDistributions of multivariate distributions, then the third
dimension corresponds to the distribution in the vector to evaluate.

Examples:

m <- MixtureDistribution$new(list(Binomial$new(prob = 0.5, size = 10), Binomial$new()),
weights = c(0.2, 0.8)

)
m$pdf(1:5)
m$pdf(1)
also possible but unlikely to be used
m$pdf(1, 2)

180 MixtureDistribution

Method cdf(): Cumulative distribution function of the mixture distribution. Computed by

FM (x) =
∑
i

(Fi)(x) ∗ wi

where wi is the vector of weights and Fi are the cdfs of the wrapped distributions.

Usage:
MixtureDistribution$cdf(
...,
lower.tail = TRUE,
log.p = FALSE,
simplify = TRUE,
data = NULL

)

Arguments:
... (numeric())

Points to evaluate the function at Arguments do not need to be named. The length of each
argument corresponds to the number of points to evaluate, the number of arguments corre-
sponds to the number of variables in the distribution. See examples. @examples m <- Mix-
tureDistribution$new(list(Binomial$new(prob = 0.5, size = 10), Binomial$new()), weights
= c(0.2, 0.8)) m$cdf(1:5)

lower.tail (logical(1))
If TRUE (default), probabilities are X <= x, otherwise, P(X > x).

log.p (logical(1))
If TRUE returns the logarithm of the probabilities. Default is FALSE.

simplify logical(1)
If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

data array
Alternative method to specify points to evaluate. If univariate then rows correspond with
number of points to evaluate and columns correspond with number of variables to evalu-
ate. In the special case of VectorDistributions of multivariate distributions, then the third
dimension corresponds to the distribution in the vector to evaluate.

Method quantile(): The quantile function is not implemented for mixture distributions.

Usage:
MixtureDistribution$quantile(
...,
lower.tail = TRUE,
log.p = FALSE,
simplify = TRUE,
data = NULL

)

Arguments:
... (numeric())

Points to evaluate the function at Arguments do not need to be named. The length of each
argument corresponds to the number of points to evaluate, the number of arguments corre-
sponds to the number of variables in the distribution. See examples.

MixtureDistribution 181

lower.tail (logical(1))
If TRUE (default), probabilities are X <= x, otherwise, P(X > x).

log.p (logical(1))
If TRUE returns the logarithm of the probabilities. Default is FALSE.

simplify logical(1)
If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

data array
Alternative method to specify points to evaluate. If univariate then rows correspond with
number of points to evaluate and columns correspond with number of variables to evalu-
ate. In the special case of VectorDistributions of multivariate distributions, then the third
dimension corresponds to the distribution in the vector to evaluate.

Method rand(): Simulation function for mixture distributions. Samples are drawn from a
mixture by first sampling Multinomial(probs = weights, size = n), then sampling each distribution
according to the samples from the Multinomial, and finally randomly permuting these draws.

Usage:
MixtureDistribution$rand(n, simplify = TRUE)

Arguments:
n (numeric(1))

Number of points to simulate from the distribution. If length greater than 1, then n <-length(n),
simplify logical(1)

If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

Examples:
m <- MixtureDistribution$new(distribution = "Normal",
params = data.frame(mean = 1:2, sd = 1))
m$rand(5)

Method clone(): The objects of this class are cloneable with this method.

Usage:
MixtureDistribution$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other wrappers: Convolution, DistributionWrapper, HuberizedDistribution, ProductDistribution,
TruncatedDistribution, VectorDistribution

Examples

--
Method `MixtureDistribution$new`
--

MixtureDistribution$new(list(Binomial$new(prob = 0.5, size = 10), Binomial$new()),
weights = c(0.2, 0.8)

182 mixturiseVector

)

--
Method `MixtureDistribution$pdf`
--

m <- MixtureDistribution$new(list(Binomial$new(prob = 0.5, size = 10), Binomial$new()),
weights = c(0.2, 0.8)

)
m$pdf(1:5)
m$pdf(1)
also possible but unlikely to be used
m$pdf(1, 2)

--
Method `MixtureDistribution$rand`
--

m <- MixtureDistribution$new(distribution = "Normal",
params = data.frame(mean = 1:2, sd = 1))
m$rand(5)

mixturiseVector Create Mixture Distribution From Multiple Vectors

Description

Given m vector distributions of length N, creates a single vector distribution consisting of n mixture
distributions mixing the m vectors.

Usage

mixturiseVector(vecdists, weights = "uniform")

Arguments

vecdists (list())
List of VectorDistributions, should be of same length and with the non-‘distlist’
constructor with the same distribution.

weights (character(1)|numeric())
Weights passed to MixtureDistribution. Default uniform weighting.

Details

Let v1 = (D11, D12, ..., D1N) and v2 = (D21, D22, ..., D2N) then the mixturiseVector func-
tion creates the vector distribution v3 = (D31, D32, ..., D3N) where D3N = m(D1N,D2N,wN) where
m is a mixture distribution with weights wN.

Multinomial 183

Examples

Not run:
v1 <- VectorDistribution$new(distribution = "Binomial", params = data.frame(size = 1:2))
v2 <- VectorDistribution$new(distribution = "Binomial", params = data.frame(size = 3:4))
mv1 <- mixturiseVector(list(v1, v2))

equivalently
mv2 <- VectorDistribution$new(list(
MixtureDistribution$new(distribution = "Binomial", params = data.frame(size = c(1, 3))),
MixtureDistribution$new(distribution = "Binomial", params = data.frame(size = c(2, 4)))

))

mv1$pdf(1:5)
mv2$pdf(1:5)

End(Not run)

Multinomial Multinomial Distribution Class

Description

Mathematical and statistical functions for the Multinomial distribution, which is commonly used to
extend the binomial distribution to multiple variables, for example to model the rolls of multiple
dice multiple times.

Details

The Multinomial distribution parameterised with number of trials, n, and probabilities of success,
p1, ..., pk, is defined by the pmf,

f(x1, x2, . . . , xk) = n!/(x1! ∗ x2! ∗ . . . ∗ xk!) ∗ px1
1 ∗ p

x2
2 ∗ . . . ∗ p

xk

k

for pi, i = 1, . . . , k;
∑
pi = 1 and n = 1, 2,

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on
∑
xi = N .

Default Parameterisation

Multinom(size = 10, probs = c(0.5, 0.5))

184 Multinomial

Omitted Methods

cdf and quantile are omitted as no closed form analytic expression could be found, decorate with
FunctionImputation for a numerical imputation.

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Multinomial

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

• Multinomial$new()

• Multinomial$mean()

• Multinomial$variance()

• Multinomial$skewness()

• Multinomial$kurtosis()

• Multinomial$entropy()

• Multinomial$mgf()

• Multinomial$cf()

• Multinomial$pgf()

• Multinomial$setParameterValue()

• Multinomial$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Multinomial$new(size = NULL, probs = NULL, decorators = NULL)

Arguments:

size (integer(1))
Number of trials, defined on the positive Naturals.

Multinomial 185

probs (numeric())
Vector of probabilities. Automatically normalised by probs = probs/sum(probs).

decorators (character())
Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Multinomial$mean(...)

Arguments:
... Unused.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Multinomial$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Multinomial$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Multinomial$kurtosis(excess = TRUE, ...)

Arguments:

186 Multinomial

excess (logical(1))
If TRUE (default) excess kurtosis returned.

... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Multinomial$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Multinomial$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Multinomial$cf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Multinomial$pgf(z, ...)

Multinomial 187

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

... Unused.

Method setParameterValue(): Sets the value(s) of the given parameter(s).

Usage:
Multinomial$setParameterValue(
...,
lst = list(...),
error = "warn",
resolveConflicts = FALSE

)

Arguments:

... ANY
Named arguments of parameters to set values for. See examples.

lst (list(1))
Alternative argument for passing parameters. List names should be parameter names and
list values are the new values to set.

error (character(1))
If "warn" then returns a warning on error, otherwise breaks if "stop".

resolveConflicts (logical(1))
If FALSE (default) throws error if conflicting parameterisations are provided, otherwise au-
tomatically resolves them by removing all conflicting parameters.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Multinomial$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other discrete distributions: Bernoulli, Binomial, Categorical, Degenerate, DiscreteUniform,
EmpiricalMV, Empirical, Geometric, Hypergeometric, Logarithmic, NegativeBinomial, WeightedDiscrete

Other multivariate distributions: Dirichlet, EmpiricalMV, MultivariateNormal

188 MultivariateNormal

MultivariateNormal Multivariate Normal Distribution Class

Description

Mathematical and statistical functions for the Multivariate Normal distribution, which is commonly
used to generalise the Normal distribution to higher dimensions, and is commonly associated with
Gaussian Processes.

Details

The Multivariate Normal distribution parameterised with mean, µ, and covariance matrix, Σ, is
defined by the pdf,

f(x1, ..., xk) = (2 ∗ π)−k/2det(Σ)−1/2exp(−1/2(x− µ)TΣ−1(x− µ))

for µεRk and ΣεRkxk.

Sampling is performed via the Cholesky decomposition using chol.

Number of variables cannot be changed after construction.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Reals and only when the covariance matrix is positive-definite.

Default Parameterisation

MultiNorm(mean = rep(0, 2), cov = c(1, 0, 0, 1))

Omitted Methods

cdf and quantile are omitted as no closed form analytic expression could be found, decorate with
FunctionImputation for a numerical imputation.

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> MultivariateNormal

MultivariateNormal 189

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:
• MultivariateNormal$new()

• MultivariateNormal$mean()

• MultivariateNormal$mode()

• MultivariateNormal$variance()

• MultivariateNormal$entropy()

• MultivariateNormal$mgf()

• MultivariateNormal$cf()

• MultivariateNormal$pgf()

• MultivariateNormal$getParameterValue()

• MultivariateNormal$setParameterValue()

• MultivariateNormal$clone()

Method new(): Creates a new instance of this R6 class. Number of variables cannot be changed
after construction.

Usage:
MultivariateNormal$new(
mean = rep(0, 2),
cov = c(1, 0, 0, 1),
prec = NULL,
decorators = NULL

)

Arguments:
mean (numeric())

Vector of means, defined on the Reals.
cov (matrix()|vector())

Covariance of the distribution, either given as a matrix or vector coerced to a matrix via
matrix(cov,nrow = K,byrow = FALSE). Must be semi-definite.

prec (matrix()|vector())
Precision of the distribution, inverse of the covariance matrix. If supplied then cov is ig-
nored. Given as a matrix or vector coerced to a matrix via matrix(cov,nrow = K,byrow =
FALSE). Must be semi-definite.

decorators (character())
Decorators to add to the distribution during construction.

190 MultivariateNormal

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
MultivariateNormal$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
MultivariateNormal$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
MultivariateNormal$variance(...)

Arguments:
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
MultivariateNormal$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

MultivariateNormal 191

Usage:
MultivariateNormal$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.
Usage:
MultivariateNormal$cf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.
Usage:
MultivariateNormal$pgf(z, ...)

Arguments:
z (integer(1))

z integer to evaluate probability generating function at.
... Unused.

Method getParameterValue(): Returns the value of the supplied parameter.
Usage:
MultivariateNormal$getParameterValue(id, error = "warn")

Arguments:
id character()

id of parameter support to return.
error (character(1))

If "warn" then returns a warning on error, otherwise breaks if "stop".

Method setParameterValue(): Sets the value(s) of the given parameter(s).
Usage:
MultivariateNormal$setParameterValue(
...,
lst = list(...),
error = "warn",
resolveConflicts = FALSE

)

192 NegativeBinomial

Arguments:

... ANY
Named arguments of parameters to set values for. See examples.

lst (list(1))
Alternative argument for passing parameters. List names should be parameter names and
list values are the new values to set.

error (character(1))
If "warn" then returns a warning on error, otherwise breaks if "stop".

resolveConflicts (logical(1))
If FALSE (default) throws error if conflicting parameterisations are provided, otherwise au-
tomatically resolves them by removing all conflicting parameters.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MultivariateNormal$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

Gentle, J.E. (2009). Computational Statistics. Statistics and Computing. New York: Springer. pp.
315–316. doi:10.1007/978-0-387-98144-4. ISBN 978-0-387-98143-7.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

Other multivariate distributions: Dirichlet, EmpiricalMV, Multinomial

NegativeBinomial Negative Binomial Distribution Class

Description

Mathematical and statistical functions for the Negative Binomial distribution, which is commonly
used to model the number of successes, trials or failures before a given number of failures or suc-
cesses.

NegativeBinomial 193

Details

The Negative Binomial distribution parameterised with number of failures before successes, n, and
probability of success, p, is defined by the pmf,

f(x) = C(x+ n− 1, n− 1)pn(1− p)x

for n = 0, 1, 2, . . . and probability p, where C(a, b) is the combination (or binomial coefficient)
function.

The Negative Binomial distribution can refer to one of four distributions (forms):

1. The number of failures before K successes (fbs)

2. The number of successes before K failures (sbf)

3. The number of trials before K failures (tbf)

4. The number of trials before K successes (tbs)

For each we refer to the number of K successes/failures as the size parameter.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on 0, 1, 2, . . . (for fbs and sbf) or n, n+ 1, n+ 2, . . . (for tbf and tbs)
(see below).

Default Parameterisation

NBinom(size = 10, prob = 0.5, form = "fbs")

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> NegativeBinomial

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

194 NegativeBinomial

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:
• NegativeBinomial$new()

• NegativeBinomial$mean()

• NegativeBinomial$mode()

• NegativeBinomial$variance()

• NegativeBinomial$skewness()

• NegativeBinomial$kurtosis()

• NegativeBinomial$mgf()

• NegativeBinomial$cf()

• NegativeBinomial$pgf()

• NegativeBinomial$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
NegativeBinomial$new(
size = NULL,
prob = NULL,
qprob = NULL,
mean = NULL,
form = NULL,
decorators = NULL

)

Arguments:
size (integer(1))

Number of trials/successes.
prob (numeric(1))

Probability of success.
qprob (numeric(1))

Probability of failure. If provided then prob is ignored. qprob = 1 -prob.
mean (numeric(1))

Mean of distribution, alternative to prob and qprob.
form character(1))

Form of the distribution, cannot be changed after construction. Options are to model the
number of,
• "fbs" - Failures before successes.
• "sbf" - Successes before failures.
• "tbf" - Trials before failures.
• "tbs" - Trials before successes. Use $description to see the Negative Binomial form.

decorators (character())
Decorators to add to the distribution during construction.

NegativeBinomial 195

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
NegativeBinomial$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
NegativeBinomial$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
NegativeBinomial$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
NegativeBinomial$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

196 NegativeBinomial

Usage:
NegativeBinomial$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))

If TRUE (default) excess kurtosis returned.
... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.
Usage:
NegativeBinomial$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.
Usage:
NegativeBinomial$cf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.
Usage:
NegativeBinomial$pgf(z, ...)

Arguments:
z (integer(1))

z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.
Usage:
NegativeBinomial$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Normal 197

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other discrete distributions: Bernoulli, Binomial, Categorical, Degenerate, DiscreteUniform,
EmpiricalMV, Empirical, Geometric, Hypergeometric, Logarithmic, Multinomial, WeightedDiscrete

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull, WeightedDiscrete

Normal Normal Distribution Class

Description

Mathematical and statistical functions for the Normal distribution, which is commonly used in
significance testing, for representing models with a bell curve, and as a result of the central limit
theorem.

Details

The Normal distribution parameterised with variance, σ2, and mean, µ, is defined by the pdf,

f(x) = exp(−(x− µ)2/(2σ2))/
√

2πσ2

for µεR and σ2 > 0.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Reals.

Default Parameterisation

Norm(mean = 0, var = 1)

Omitted Methods

N/A

198 Normal

Also known as

Also known as the Gaussian distribution.

Super classes

distr6::Distribution -> distr6::SDistribution -> Normal

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:
• Normal$new()

• Normal$mean()

• Normal$mode()

• Normal$variance()

• Normal$skewness()

• Normal$kurtosis()

• Normal$entropy()

• Normal$mgf()

• Normal$cf()

• Normal$pgf()

• Normal$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Normal$new(mean = NULL, var = NULL, sd = NULL, prec = NULL, decorators = NULL)

Arguments:
mean (numeric(1))

Mean of the distribution, defined on the Reals.
var (numeric(1))

Variance of the distribution, defined on the positive Reals.
sd (numeric(1))

Standard deviation of the distribution, defined on the positive Reals. sd = sqrt(var). If
provided then var ignored.

prec (numeric(1))
Precision of the distribution, defined on the positive Reals. prec = 1/var. If provided then
var ignored.

decorators (character())
Decorators to add to the distribution during construction.

Normal 199

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Normal$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Normal$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Normal$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Normal$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

200 Normal

Usage:
Normal$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))

If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Normal$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Normal$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Normal$cf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

NormalKernel 201

Usage:
Normal$pgf(z, ...)

Arguments:
z (integer(1))

z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Normal$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal,
MultivariateNormal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

NormalKernel Normal Kernel

Description

Mathematical and statistical functions for the NormalKernel kernel defined by the pdf,

f(x) = exp(−x2/2)/
√

2π

over the support x ∈ R.

Details

We use the erf and erfinv error and inverse error functions from pracma.

https://CRAN.R-project.org/package=pracma

202 NormalKernel

Super classes

distr6::Distribution -> distr6::Kernel -> NormalKernel

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:
• NormalKernel$new()

• NormalKernel$pdfSquared2Norm()

• NormalKernel$variance()

• NormalKernel$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
NormalKernel$new(decorators = NULL)

Arguments:
decorators (character())

Decorators to add to the distribution during construction.

Method pdfSquared2Norm(): The squared 2-norm of the pdf is defined by∫ b

a

(fX(u))2du

where X is the Distribution, fX is its pdf and a, b are the distribution support limits.

Usage:
NormalKernel$pdfSquared2Norm(x = 0, upper = Inf)

Arguments:
x (numeric(1))

Amount to shift the result.
upper (numeric(1))

Upper limit of the integral.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:

Pareto 203

NormalKernel$variance(...)

Arguments:

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
NormalKernel$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other kernels: Cosine, Epanechnikov, LogisticKernel, Quartic, Sigmoid, Silverman, TriangularKernel,
Tricube, Triweight, UniformKernel

Pareto Pareto Distribution Class

Description

Mathematical and statistical functions for the Pareto distribution, which is commonly used in Eco-
nomics to model the distribution of wealth and the 80-20 rule.

Details

The Pareto distribution parameterised with shape, α, and scale, β, is defined by the pdf,

f(x) = (αβα)/(xα+1)

for α, β > 0.

Currently this is implemented as the Type I Pareto distribution, other types will be added in the
future. Characteristic function is omitted as no suitable incomplete gamma function with complex
inputs implementation could be found.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on [β,∞).

Default Parameterisation

Pare(shape = 1, scale = 1)

204 Pareto

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Pareto

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:
• Pareto$new()

• Pareto$mean()

• Pareto$mode()

• Pareto$median()

• Pareto$variance()

• Pareto$skewness()

• Pareto$kurtosis()

• Pareto$entropy()

• Pareto$mgf()

• Pareto$pgf()

• Pareto$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Pareto$new(shape = NULL, scale = NULL, decorators = NULL)

Arguments:

shape (numeric(1))
Shape parameter, defined on the positive Reals.

scale (numeric(1))
Scale parameter, defined on the positive Reals.

Pareto 205

decorators (character())
Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Pareto$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Pareto$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method median(): Returns the median of the distribution. If an analytical expression is avail-
able returns distribution median, otherwise if symmetric returns self$mean, otherwise returns
self$quantile(0.5).

Usage:
Pareto$median()

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Pareto$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:

206 Pareto

Pareto$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Pareto$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))

If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Pareto$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Pareto$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

plot.Distribution 207

Usage:

Pareto$pgf(z, ...)

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:

Pareto$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal,
MultivariateNormal, Normal, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

plot.Distribution Plot Distribution Functions for a distr6 Object

Description

Six plots, which can be selected with fun are available for discrete and continuous univariate dis-
tributions: pdf, cdf, quantile, survival, hazard and cumulative hazard. By default, the first two are
plotted side by side.

208 plot.Distribution

Usage

S3 method for class 'Distribution'
plot(
x,
fun = c("pdf", "cdf"),
npoints = 3000,
plot = TRUE,
ask = FALSE,
arrange = TRUE,
...

)

Arguments

x distr6 object.

fun vector of functions to plot, one or more of: "pdf","cdf","quantile", "survival",
"hazard", "cumhazard", and "all"; partial matching available.

npoints number of evaluation points.

plot logical; if TRUE (default), figures are displayed in the plot window; otherwise
a data.table::data.table() of points and calculated values is returned.

ask logical; if TRUE, the user is asked before each plot, see graphics::par().

arrange logical; if TRUE (default), margins are automatically adjusted with graphics::layout()
to accommodate all plotted functions.

... graphical parameters, see details.

Details

The evaluation points are calculated using inverse transform on a uniform grid between 0 and 1 with
length given by npoints. Therefore any distribution without an analytical quantile method will
first need to be imputed with the FunctionImputation decorator.

The order that the functions are supplied to fun determines the order in which they are plotted,
however this is ignored if ask is TRUE. If ask is TRUE then arrange is ignored. For maximum
flexibility in plotting layouts, set arrange and ask to FALSE.

The graphical parameters passed to ... can either apply to all plots or selected plots. If parameters
in par are prefixed with the plotted function name, then the parameter only applies to that function,
otherwise it applies to them all. See examples for a clearer description.

Author(s)

Chengyang Gao, Runlong Yu and Shuhan Liu

See Also

lines.Distribution

plot.VectorDistribution 209

Examples

Not run:
Plot pdf and cdf of Normal
plot(Normal$new())

Colour both plots red
plot(Normal$new(), col = "red")

Change the colours of individual plotted functions
plot(Normal$new(), pdf_col = "red", cdf_col = "green")

Interactive plotting in order - par still works here
plot(Geometric$new(),

fun = "all", ask = TRUE, pdf_col = "black",
cdf_col = "red", quantile_col = "blue", survival_col = "purple",
hazard_col = "brown", cumhazard_col = "yellow"

)

Return plotting structure
x <- plot(Gamma$new(), plot = FALSE)

End(Not run)

plot.VectorDistribution

Plotting Distribution Functions for a VectorDistribution

Description

Helper function to more easily plot distributions inside a VectorDistribution.

Usage

S3 method for class 'VectorDistribution'
plot(x, fun = "pdf", topn, ind, cols, ...)

Arguments

x VectorDistribution.

fun function to plot, one of: "pdf","cdf","quantile", "survival", "hazard", "cumhaz-
ard".

topn integer. First n distributions in the VectorDistribution to plot.

ind integer. Indices of the distributions in the VectorDistribution to plot. If given
then topn is ignored.

cols character. Vector of colours for plotting the curves. If missing 1:9 are used.

... Other parameters passed to plot.Distribution.

210 Poisson

Details

If topn and ind are both missing then all distributions are plotted if there are 10 or less in the vector,
otherwise the function will error.

See Also

plot.Distribution

Examples

Not run:
Plot pdf of Normal distribution
vd <- VectorDistribution$new(list(Normal$new(), Normal$new(mean = 2)))
plot(vd)
plot(vd, fun = "surv")
plot(vd, fun = "quantile", ylim = c(-4, 4), col = c("blue", "purple"))

End(Not run)

Poisson Poisson Distribution Class

Description

Mathematical and statistical functions for the Poisson distribution, which is commonly used to
model the number of events occurring in at a constant, independent rate over an interval of time or
space.

Details

The Poisson distribution parameterised with arrival rate, λ, is defined by the pmf,

f(x) = (λx ∗ exp(−λ))/x!

for λ > 0.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Naturals.

Default Parameterisation

Pois(rate = 1)

Poisson 211

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Poisson

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:
• Poisson$new()

• Poisson$mean()

• Poisson$mode()

• Poisson$variance()

• Poisson$skewness()

• Poisson$kurtosis()

• Poisson$mgf()

• Poisson$cf()

• Poisson$pgf()

• Poisson$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Poisson$new(rate = NULL, decorators = NULL)

Arguments:
rate (numeric(1))

Rate parameter of the distribution, defined on the positive Reals.
decorators (character())

Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

212 Poisson

Usage:
Poisson$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Poisson$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Poisson$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Poisson$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Poisson$kurtosis(excess = TRUE, ...)

Arguments:

Poisson 213

excess (logical(1))
If TRUE (default) excess kurtosis returned.

... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Poisson$mgf(t, ...)

Arguments:

t (integer(1))
t integer to evaluate function at.

... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Poisson$cf(t, ...)

Arguments:

t (integer(1))
t integer to evaluate function at.

... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Poisson$pgf(z, ...)

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Poisson$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

214 ProductDistribution

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal,
MultivariateNormal, Normal, Pareto, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete

ProductDistribution Product Distribution Wrapper

Description

A wrapper for creating the product distribution of multiple independent probability distributions.

Usage

S3 method for class 'Distribution'
x * y

Arguments

x, y Distribution

Details

A product distribution is defined by

FP (X1 = x1, ..., XN = xN) = FX1(x1) ∗ ... ∗ FXN (xn)

#nolint where FP is the cdf of the product distribution and X1, ..., XN are independent distribu-
tions.

Super classes

distr6::Distribution -> distr6::DistributionWrapper -> distr6::VectorDistribution
-> ProductDistribution

ProductDistribution 215

Methods

Public methods:
• ProductDistribution$new()

• ProductDistribution$strprint()

• ProductDistribution$pdf()

• ProductDistribution$cdf()

• ProductDistribution$quantile()

• ProductDistribution$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
ProductDistribution$new(
distlist = NULL,
distribution = NULL,
params = NULL,
shared_params = NULL,
name = NULL,
short_name = NULL,
decorators = NULL,
vecdist = NULL,
ids = NULL

)

Arguments:

distlist (list())
List of Distributions.

distribution (character(1))
Should be supplied with params and optionally shared_params as an alternative to distlist.
Much faster implementation when only one class of distribution is being wrapped. distribution
is the full name of one of the distributions in listDistributions(), or "Distribution"
if constructing custom distributions. See examples in VectorDistribution.

params (list()|data.frame())
Parameters in the individual distributions for use with distribution. Can be supplied as
a list, where each element is the list of parameters to set in the distribution, or as an object
coercable to data.frame, where each column is a parameter and each row is a distribution.
See examples in VectorDistribution.

shared_params (list())
If any parameters are shared when using the distribution constructor, this provides a
much faster implementation to list and query them together. See examples in VectorDistri-
bution.

name (character(1))
Optional name of wrapped distribution.

short_name (character(1))
Optional short name/ID of wrapped distribution.

decorators (character())
Decorators to add to the distribution during construction.

216 ProductDistribution

vecdist VectorDistribution
Alternative constructor to directly create this object from an object inheriting from Vec-
torDistribution.

ids (character())
Optional ids for wrapped distributions in vector, should be unique and of same length as the
number of distributions.

Examples:

\dontrun{
ProductDistribution$new(list(Binomial$new(
prob = 0.5,
size = 10

), Normal$new(mean = 15)))

ProductDistribution$new(
distribution = "Binomial",
params = list(
list(prob = 0.1, size = 2),
list(prob = 0.6, size = 4),
list(prob = 0.2, size = 6)

)
)

Equivalently
ProductDistribution$new(
distribution = "Binomial",
params = data.table::data.table(prob = c(0.1, 0.6, 0.2), size = c(2, 4, 6))

)
}

Method strprint(): Printable string representation of the ProductDistribution. Primarily
used internally.

Usage:
ProductDistribution$strprint(n = 10)

Arguments:

n (integer(1))
Number of distributions to include when printing.

Method pdf(): Probability density function of the product distribution. Computed by

fP (X1 = x1, ..., XN = xN) =
∏
i

fXi(xi)

where fXi are the pdfs of the wrapped distributions.

Usage:
ProductDistribution$pdf(..., log = FALSE, simplify = TRUE, data = NULL)

Arguments:

ProductDistribution 217

... (numeric())
Points to evaluate the function at Arguments do not need to be named. The length of each
argument corresponds to the number of points to evaluate, the number of arguments corre-
sponds to the number of variables in the distribution. See examples.

log (logical(1))
If TRUE returns the logarithm of the probabilities. Default is FALSE.

simplify logical(1)
If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

data array
Alternative method to specify points to evaluate. If univariate then rows correspond with
number of points to evaluate and columns correspond with number of variables to evalu-
ate. In the special case of VectorDistributions of multivariate distributions, then the third
dimension corresponds to the distribution in the vector to evaluate.

Examples:

p <- ProductDistribution$new(list(
Binomial$new(prob = 0.5, size = 10),
Binomial$new()))
p$pdf(1:5)
p$pdf(1, 2)
p$pdf(1:2)

Method cdf(): Cumulative distribution function of the product distribution. Computed by

FP (X1 = x1, ..., XN = xN) =
∏
i

FXi(xi)

where FXi are the cdfs of the wrapped distributions.

Usage:
ProductDistribution$cdf(
...,
lower.tail = TRUE,
log.p = FALSE,
simplify = TRUE,
data = NULL

)

Arguments:

... (numeric())
Points to evaluate the function at Arguments do not need to be named. The length of each
argument corresponds to the number of points to evaluate, the number of arguments corre-
sponds to the number of variables in the distribution. See examples.

lower.tail (logical(1))
If TRUE (default), probabilities are X <= x, otherwise, P(X > x).

log.p (logical(1))
If TRUE returns the logarithm of the probabilities. Default is FALSE.

simplify logical(1)
If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

218 ProductDistribution

data array
Alternative method to specify points to evaluate. If univariate then rows correspond with
number of points to evaluate and columns correspond with number of variables to evalu-
ate. In the special case of VectorDistributions of multivariate distributions, then the third
dimension corresponds to the distribution in the vector to evaluate.

Examples:

p <- ProductDistribution$new(list(
Binomial$new(prob = 0.5, size = 10),
Binomial$new()))
p$cdf(1:5)
p$cdf(1, 2)
p$cdf(1:2)

Method quantile(): The quantile function is not implemented for product distributions.

Usage:
ProductDistribution$quantile(
...,
lower.tail = TRUE,
log.p = FALSE,
simplify = TRUE,
data = NULL

)

Arguments:

... (numeric())
Points to evaluate the function at Arguments do not need to be named. The length of each
argument corresponds to the number of points to evaluate, the number of arguments corre-
sponds to the number of variables in the distribution. See examples.

lower.tail (logical(1))
If TRUE (default), probabilities are X <= x, otherwise, P(X > x).

log.p (logical(1))
If TRUE returns the logarithm of the probabilities. Default is FALSE.

simplify logical(1)
If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

data array
Alternative method to specify points to evaluate. If univariate then rows correspond with
number of points to evaluate and columns correspond with number of variables to evalu-
ate. In the special case of VectorDistributions of multivariate distributions, then the third
dimension corresponds to the distribution in the vector to evaluate.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ProductDistribution$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

ProductDistribution 219

See Also

Other wrappers: Convolution, DistributionWrapper, HuberizedDistribution, MixtureDistribution,
TruncatedDistribution, VectorDistribution

Examples

--
Method `ProductDistribution$new`
--

Not run:
ProductDistribution$new(list(Binomial$new(

prob = 0.5,
size = 10

), Normal$new(mean = 15)))

ProductDistribution$new(
distribution = "Binomial",
params = list(
list(prob = 0.1, size = 2),
list(prob = 0.6, size = 4),
list(prob = 0.2, size = 6)

)
)

Equivalently
ProductDistribution$new(

distribution = "Binomial",
params = data.table::data.table(prob = c(0.1, 0.6, 0.2), size = c(2, 4, 6))

)

End(Not run)

--
Method `ProductDistribution$pdf`
--

p <- ProductDistribution$new(list(
Binomial$new(prob = 0.5, size = 10),
Binomial$new()))
p$pdf(1:5)
p$pdf(1, 2)
p$pdf(1:2)

--
Method `ProductDistribution$cdf`
--

p <- ProductDistribution$new(list(
Binomial$new(prob = 0.5, size = 10),
Binomial$new()))

220 qqplot

p$cdf(1:5)
p$cdf(1, 2)
p$cdf(1:2)
Normal$new() * Binomial$new()

qqplot Quantile-Quantile Plots for distr6 Objects

Description

Quantile-quantile plots are used to compare a "theoretical" or empirical distribution to a reference
distribution. They can also compare the quantiles of two reference distributions.

Usage

qqplot(x, y, npoints = 3000, idline = TRUE, plot = TRUE, ...)

Arguments

x distr6 object or numeric vector.
y distr6 object or numeric vector.
npoints number of evaluation points.
idline logical; if TRUE (default), the line y = x is plotted
plot logical; if TRUE (default), figures are displayed in the plot window; otherwise

a data.table::data.table of points and calculated values is returned.
... graphical parameters.

Details

If x or y are given as numeric vectors then they are first passed to the Empirical distribution. The
Empirical distribution is a discrete distribution so quantiles are equivalent to the the Type 1 method
in quantile.

Author(s)

Chijing Zeng

See Also

plot.Distribution for plotting a distr6 object.

Examples

qqplot(Normal$new(mean = 15, sd = sqrt(30)), ChiSquared$new(df = 15))
qqplot(rt(200, df = 5), rt(300, df = 5),

main = "QQ-Plot", xlab = "t-200",
ylab = "t-300"

)
qqplot(Normal$new(mean = 2), rnorm(100, mean = 3))

Quartic 221

Quartic Quartic Kernel

Description

Mathematical and statistical functions for the Quartic kernel defined by the pdf,

f(x) = 15/16(1− x2)2

over the support x ∈ (−1, 1).

Details

Quantile is omitted as no closed form analytic expression could be found, decorate with Function-
Imputation for numeric results.

Super classes

distr6::Distribution -> distr6::Kernel -> Quartic

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

Methods

Public methods:
• Quartic$pdfSquared2Norm()

• Quartic$cdfSquared2Norm()

• Quartic$variance()

• Quartic$clone()

Method pdfSquared2Norm(): The squared 2-norm of the pdf is defined by∫ b

a

(fX(u))2du

where X is the Distribution, fX is its pdf and a, b are the distribution support limits.

Usage:
Quartic$pdfSquared2Norm(x = 0, upper = Inf)

Arguments:

x (numeric(1))
Amount to shift the result.

222 Quartic

upper (numeric(1))
Upper limit of the integral.

Method cdfSquared2Norm(): The squared 2-norm of the cdf is defined by∫ b

a

(FX(u))2du

where X is the Distribution, FX is its pdf and a, b are the distribution support limits.

Usage:

Quartic$cdfSquared2Norm(x = 0, upper = 0)

Arguments:

x (numeric(1))
Amount to shift the result.

upper (numeric(1))
Upper limit of the integral.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:

Quartic$variance(...)

Arguments:

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:

Quartic$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other kernels: Cosine, Epanechnikov, LogisticKernel, NormalKernel, Sigmoid, Silverman,
TriangularKernel, Tricube, Triweight, UniformKernel

Rayleigh 223

Rayleigh Rayleigh Distribution Class

Description

Mathematical and statistical functions for the Rayleigh distribution, which is commonly used to
model random complex numbers..

Details

The Rayleigh distribution parameterised with mode (or scale), α, is defined by the pdf,

f(x) = x/α2exp(−x2/(2α2))

for α > 0.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on [0,∞).

Default Parameterisation

Rayl(mode = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Rayleigh

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

224 Rayleigh

Methods

Public methods:
• Rayleigh$new()

• Rayleigh$mean()

• Rayleigh$mode()

• Rayleigh$median()

• Rayleigh$variance()

• Rayleigh$skewness()

• Rayleigh$kurtosis()

• Rayleigh$entropy()

• Rayleigh$pgf()

• Rayleigh$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Rayleigh$new(mode = NULL, decorators = NULL)

Arguments:
mode (numeric(1))

Mode of the distribution, defined on the positive Reals. Scale parameter.
decorators (character())

Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Rayleigh$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Rayleigh$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method median(): Returns the median of the distribution. If an analytical expression is avail-
able returns distribution median, otherwise if symmetric returns self$mean, otherwise returns
self$quantile(0.5).

Rayleigh 225

Usage:
Rayleigh$median()

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Rayleigh$variance(...)

Arguments:

... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Rayleigh$skewness(...)

Arguments:

... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Rayleigh$kurtosis(excess = TRUE, ...)

Arguments:

excess (logical(1))
If TRUE (default) excess kurtosis returned.

... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Rayleigh$entropy(base = 2, ...)

226 Rayleigh

Arguments:

base (integer(1))
Base of the entropy logarithm, default = 2 (Shannon entropy)

... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Rayleigh$pgf(z, ...)

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Rayleigh$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal,
MultivariateNormal, Normal, Pareto, Poisson, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, ShiftedLoglogistic, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull, WeightedDiscrete

rep.Distribution 227

rep.Distribution Replicate Distribution into Vector, Mixture, or Product

Description

Replicates a constructed distribution into either a

• VectorDistribution (class = "vector")

• ProductDistribution (class = "product")

• MixtureDistribution (class = "mixture")

If the distribution is not a custom Distribution then uses the more efficient distribution/params
constructor, otherwise uses distlist.

Usage

S3 method for class 'Distribution'
rep(x, times, class = c("vector", "product", "mixture"), ...)

Arguments

x Distribution

times (integer(1)) Number of times to replicate the distribution

class (character(1)) What type of vector to create, see description.

... Additional arguments, currently unused.

Examples

rep(Binomial$new(), 10)
rep(Gamma$new(), 2, class = "product")

SDistribution Abstract Special Distribution Class

Description

Abstract class that cannot be constructed directly.

Value

Returns error. Abstract classes cannot be constructed directly.

Super class

distr6::Distribution -> SDistribution

228 ShiftedLoglogistic

Public fields

package Deprecated, use $packages instead.

packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:

• SDistribution$new()

• SDistribution$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
SDistribution$new(
decorators,
support,
type,
symmetry = c("asymmetric", "symmetric")

)

Arguments:

decorators (character())
Decorators to add to the distribution during construction.

support [set6::Set]
Support of the distribution.

type [set6::Set]
Type of the distribution.

symmetry character(1)
Distribution symmetry type, default "asymmetric".

Method clone(): The objects of this class are cloneable with this method.

Usage:
SDistribution$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

ShiftedLoglogistic Shifted Log-Logistic Distribution Class

Description

Mathematical and statistical functions for the Shifted Log-Logistic distribution, which is commonly
used in survival analysis for its non-monotonic hazard as well as in economics, a generalised variant
of Loglogistic.

ShiftedLoglogistic 229

Details

The Shifted Log-Logistic distribution parameterised with shape, β, scale, α, and location, γ, is
defined by the pdf,

f(x) = (β/α)((x− γ)/α)β−1(1 + ((x− γ)/α)β)−2

for α, β > 0 and γ >= 0.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the non-negative Reals.

Default Parameterisation

ShiftLLogis(scale = 1, shape = 1, location = 0)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> ShiftedLoglogistic

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

230 ShiftedLoglogistic

Methods

Public methods:

• ShiftedLoglogistic$new()

• ShiftedLoglogistic$mean()

• ShiftedLoglogistic$mode()

• ShiftedLoglogistic$median()

• ShiftedLoglogistic$variance()

• ShiftedLoglogistic$pgf()

• ShiftedLoglogistic$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
ShiftedLoglogistic$new(
scale = NULL,
shape = NULL,
location = NULL,
rate = NULL,
decorators = NULL

)

Arguments:

scale numeric(1))
Scale parameter of the distribution, defined on the positive Reals. scale = 1/rate. If
provided rate is ignored.

shape (numeric(1))
Shape parameter, defined on the positive Reals.

location (numeric(1))
Location parameter, defined on the Reals.

rate (numeric(1))
Rate parameter of the distribution, defined on the positive Reals.

decorators (character())
Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
ShiftedLoglogistic$mean(...)

Arguments:

... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

ShiftedLoglogistic 231

Usage:
ShiftedLoglogistic$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method median(): Returns the median of the distribution. If an analytical expression is avail-
able returns distribution median, otherwise if symmetric returns self$mean, otherwise returns
self$quantile(0.5).

Usage:
ShiftedLoglogistic$median()

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
ShiftedLoglogistic$variance(...)

Arguments:
... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
ShiftedLoglogistic$pgf(z, ...)

Arguments:
z (integer(1))

z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ShiftedLoglogistic$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

232 Sigmoid

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal,
MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, StudentTNoncentral, StudentT,
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, StudentTNoncentral, StudentT, Triangular,
Uniform, Wald, Weibull, WeightedDiscrete

Sigmoid Sigmoid Kernel

Description

Mathematical and statistical functions for the Sigmoid kernel defined by the pdf,

f(x) = 2/π(exp(x) + exp(−x))−1

over the support x ∈ R.

Details

The cdf and quantile functions are omitted as no closed form analytic expressions could be found,
decorate with FunctionImputation for numeric results.

Super classes

distr6::Distribution -> distr6::Kernel -> Sigmoid

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

Methods

Public methods:
• Sigmoid$new()

• Sigmoid$pdfSquared2Norm()

• Sigmoid$variance()

• Sigmoid$clone()

Sigmoid 233

Method new(): Creates a new instance of this R6 class.

Usage:
Sigmoid$new(decorators = NULL)

Arguments:

decorators (character())
Decorators to add to the distribution during construction.

Method pdfSquared2Norm(): The squared 2-norm of the pdf is defined by∫ b

a

(fX(u))2du

where X is the Distribution, fX is its pdf and a, b are the distribution support limits.

Usage:
Sigmoid$pdfSquared2Norm(x = 0, upper = Inf)

Arguments:

x (numeric(1))
Amount to shift the result.

upper (numeric(1))
Upper limit of the integral.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Sigmoid$variance(...)

Arguments:

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Sigmoid$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other kernels: Cosine, Epanechnikov, LogisticKernel, NormalKernel, Quartic, Silverman,
TriangularKernel, Tricube, Triweight, UniformKernel

234 Silverman

Silverman Silverman Kernel

Description

Mathematical and statistical functions for the Silverman kernel defined by the pdf,

f(x) = exp(−|x|/
√

2)/2 ∗ sin(|x|/
√

2 + π/4)

over the support x ∈ R.

Details

The cdf and quantile functions are omitted as no closed form analytic expressions could be found,
decorate with FunctionImputation for numeric results.

Super classes

distr6::Distribution -> distr6::Kernel -> Silverman

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

Methods

Public methods:
• Silverman$new()

• Silverman$pdfSquared2Norm()

• Silverman$cdfSquared2Norm()

• Silverman$variance()

• Silverman$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Silverman$new(decorators = NULL)

Arguments:
decorators (character())

Decorators to add to the distribution during construction.

Method pdfSquared2Norm(): The squared 2-norm of the pdf is defined by∫ b

a

(fX(u))2du

where X is the Distribution, fX is its pdf and a, b are the distribution support limits.

Silverman 235

Usage:
Silverman$pdfSquared2Norm(x = 0, upper = Inf)

Arguments:

x (numeric(1))
Amount to shift the result.

upper (numeric(1))
Upper limit of the integral.

Method cdfSquared2Norm(): The squared 2-norm of the cdf is defined by∫ b

a

(FX(u))2du

where X is the Distribution, FX is its pdf and a, b are the distribution support limits.

Usage:
Silverman$cdfSquared2Norm(x = 0, upper = 0)

Arguments:

x (numeric(1))
Amount to shift the result.

upper (numeric(1))
Upper limit of the integral.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Silverman$variance(...)

Arguments:

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Silverman$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other kernels: Cosine, Epanechnikov, LogisticKernel, NormalKernel, Quartic, Sigmoid, TriangularKernel,
Tricube, Triweight, UniformKernel

236 skewType

simulateEmpiricalDistribution

Sample Empirical Distribution Without Replacement

Description

Function to sample Empirical Distributions without replacement, as opposed to the rand method
which samples with replacement.

Usage

simulateEmpiricalDistribution(EmpiricalDist, n, seed = NULL)

Arguments

EmpiricalDist Empirical Distribution

n Number of samples to generate. See Details.

seed Numeric passed to set.seed. See Details.

Details

This function can only be used to sample from the Empirical distribution without replacement,
and will return an error for other distributions.

The seed param ensures that the same samples can be reproduced and is more convenient than using
the set.seed() function each time before use. If set.seed is NULL then the seed is left unchanged
(NULL is not passed to the set.seed function).

If n is of length greater than one, then n is taken to be the length of n. If n is greater than the number
of observations in the Empirical distribution, then n is taken to be the number of observations in the
distribution.

Value

A vector of length n with elements drawn without replacement from the given Empirical distribu-
tion.

skewType Skewness Type

Description

Gets the type of skewness

Usage

skewType(skew)

StudentT 237

Arguments

skew numeric

Details

Skewness is a measure of asymmetry of a distribution.

A distribution can either have negative skew, no skew or positive skew. A symmetric distribution
will always have no skew but the reverse relationship does not always hold.

Value

Returns one of ’negative skew’, ’no skew’ or ’positive skew’.

Examples

skewType(1)
skewType(0)
skewType(-1)

StudentT Student’s T Distribution Class

Description

Mathematical and statistical functions for the Student’s T distribution, which is commonly used to
estimate the mean of populations with unknown variance from a small sample size, as well as in
t-testing for difference of means and regression analysis.

Details

The Student’s T distribution parameterised with degrees of freedom, ν, is defined by the pdf,

f(x) = Γ((ν + 1)/2)/(
√

(νπ)Γ(ν/2)) ∗ (1 + (x2)/ν)(− (ν + 1)/2)

for ν > 0.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Reals.

Default Parameterisation

T(df = 1)

238 StudentT

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> StudentT

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:
• StudentT$new()

• StudentT$mean()

• StudentT$mode()

• StudentT$variance()

• StudentT$skewness()

• StudentT$kurtosis()

• StudentT$entropy()

• StudentT$mgf()

• StudentT$cf()

• StudentT$pgf()

• StudentT$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
StudentT$new(df = NULL, decorators = NULL)

Arguments:
df (integer(1))

Degrees of freedom of the distribution defined on the positive Reals.
decorators (character())

Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

StudentT 239

Usage:
StudentT$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
StudentT$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
StudentT$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
StudentT$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
StudentT$kurtosis(excess = TRUE, ...)

Arguments:

240 StudentT

excess (logical(1))
If TRUE (default) excess kurtosis returned.

... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
StudentT$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
StudentT$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
StudentT$cf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
StudentT$pgf(z, ...)

StudentTNoncentral 241

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
StudentT$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Chijing Zeng

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal,
MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
Triangular, Uniform, Wald, Weibull, WeightedDiscrete

StudentTNoncentral Noncentral Student’s T Distribution Class

Description

Mathematical and statistical functions for the Noncentral Student’s T distribution, which is com-
monly used to estimate the mean of populations with unknown variance from a small sample size,
as well as in t-testing for difference of means and regression analysis.

242 StudentTNoncentral

Details

The Noncentral Student’s T distribution parameterised with degrees of freedom, ν and location, λ,
is defined by the pdf,

f(x) = (νν/2exp(−(νλ2)/(2(x2+ν)))/(
√
πΓ(ν/2)2(ν−1)/2(x2+ν)(ν+1)/2))

∫ ∞
0

yνexp(−1/2(y−xλ/
√
x2 + ν)2)

for ν > 0, λεR.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Reals.

Default Parameterisation

TNS(df = 1, location = 0)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> StudentTNoncentral

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:
• StudentTNoncentral$new()

• StudentTNoncentral$mean()

• StudentTNoncentral$variance()

• StudentTNoncentral$clone()

Method new(): Creates a new instance of this R6 class.

StudentTNoncentral 243

Usage:
StudentTNoncentral$new(df = NULL, location = NULL, decorators = NULL)

Arguments:

df (integer(1))
Degrees of freedom of the distribution defined on the positive Reals.

location (numeric(1))
Location parameter, defined on the Reals.

decorators (character())
Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
StudentTNoncentral$mean(...)

Arguments:

... Unused.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
StudentTNoncentral$variance(...)

Arguments:

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
StudentTNoncentral$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Jordan Deenichin

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

244 testContinuous

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal,
MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentT,
Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentT, Triangular,
Uniform, Wald, Weibull, WeightedDiscrete

testContinuous assert/check/test/Continuous

Description

Validation checks to test if Distribution is continuous.

Usage

testContinuous(
object,
errormsg = paste(object$short_name, "is not continuous")

)

checkContinuous(
object,
errormsg = paste(object$short_name, "is not continuous")

)

assertContinuous(
object,
errormsg = paste(object$short_name, "is not continuous")

)

Arguments

object Distribution

errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert
stops code with error, check returns an error message as string, test returns FALSE.

testDiscrete 245

Examples

testContinuous(Binomial$new()) # FALSE

testDiscrete assert/check/test/Discrete

Description

Validation checks to test if Distribution is discrete.

Usage

testDiscrete(object, errormsg = paste(object$short_name, "is not discrete"))

checkDiscrete(object, errormsg = paste(object$short_name, "is not discrete"))

assertDiscrete(object, errormsg = paste(object$short_name, "is not discrete"))

Arguments

object Distribution

errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert
stops code with error, check returns an error message as string, test returns FALSE.

Examples

testDiscrete(Binomial$new()) # FALSE

testDistribution assert/check/test/Distribution

Description

Validation checks to test if a given object is a Distribution.

246 testDistributionList

Usage

testDistribution(
object,
errormsg = paste(object, "is not an R6 Distribution object")

)

checkDistribution(
object,
errormsg = paste(object, "is not an R6 Distribution object")

)

assertDistribution(
object,
errormsg = paste(object, "is not an R6 Distribution object")

)

Arguments

object object to test

errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert
stops code with error, check returns an error message as string, test returns FALSE.

Examples

testDistribution(5) # FALSE
testDistribution(Binomial$new()) # TRUE

testDistributionList assert/check/test/DistributionList

Description

Validation checks to test if a given object is a list of Distributions.

Usage

testDistributionList(
object,
errormsg = "One or more items in the list are not Distributions"

)

checkDistributionList(
object,

testLeptokurtic 247

errormsg = "One or more items in the list are not Distributions"
)

assertDistributionList(
object,
errormsg = "One or more items in the list are not Distributions"

)

Arguments

object object to test

errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert
stops code with error, check returns an error message as string, test returns FALSE.

Examples

testDistributionList(list(Binomial$new(), 5)) # FALSE
testDistributionList(list(Binomial$new(), Exponential$new())) # TRUE

testLeptokurtic assert/check/test/Leptokurtic

Description

Validation checks to test if Distribution is leptokurtic.

Usage

testLeptokurtic(
object,
errormsg = paste(object$short_name, "is not leptokurtic")

)

checkLeptokurtic(
object,
errormsg = paste(object$short_name, "is not leptokurtic")

)

assertLeptokurtic(
object,
errormsg = paste(object$short_name, "is not leptokurtic")

)

248 testMatrixvariate

Arguments

object Distribution

errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert
stops code with error, check returns an error message as string, test returns FALSE.

Examples

testLeptokurtic(Binomial$new())

testMatrixvariate assert/check/test/Matrixvariate

Description

Validation checks to test if Distribution is matrixvariate.

Usage

testMatrixvariate(
object,
errormsg = paste(object$short_name, "is not matrixvariate")

)

checkMatrixvariate(
object,
errormsg = paste(object$short_name, "is not matrixvariate")

)

assertMatrixvariate(
object,
errormsg = paste(object$short_name, "is not matrixvariate")

)

Arguments

object Distribution

errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert
stops code with error, check returns an error message as string, test returns FALSE.

testMesokurtic 249

Examples

testMatrixvariate(Binomial$new()) # FALSE

testMesokurtic assert/check/test/Mesokurtic

Description

Validation checks to test if Distribution is mesokurtic.

Usage

testMesokurtic(
object,
errormsg = paste(object$short_name, "is not mesokurtic")

)

checkMesokurtic(
object,
errormsg = paste(object$short_name, "is not mesokurtic")

)

assertMesokurtic(
object,
errormsg = paste(object$short_name, "is not mesokurtic")

)

Arguments

object Distribution

errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert
stops code with error, check returns an error message as string, test returns FALSE.

Examples

testMesokurtic(Binomial$new())

250 testMultivariate

testMixture assert/check/test/Mixture

Description

Validation checks to test if Distribution is mixture.

Usage

testMixture(object, errormsg = paste(object$short_name, "is not mixture"))

checkMixture(object, errormsg = paste(object$short_name, "is not mixture"))

assertMixture(object, errormsg = paste(object$short_name, "is not mixture"))

Arguments

object Distribution

errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert
stops code with error, check returns an error message as string, test returns FALSE.

Examples

testMixture(Binomial$new()) # FALSE

testMultivariate assert/check/test/Multivariate

Description

Validation checks to test if Distribution is multivariate.

Usage

testMultivariate(
object,
errormsg = paste(object$short_name, "is not multivariate")

)

checkMultivariate(
object,
errormsg = paste(object$short_name, "is not multivariate")

testNegativeSkew 251

)

assertMultivariate(
object,
errormsg = paste(object$short_name, "is not multivariate")

)

Arguments

object Distribution

errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert
stops code with error, check returns an error message as string, test returns FALSE.

Examples

testMultivariate(Binomial$new()) # FALSE

testNegativeSkew assert/check/test/NegativeSkew

Description

Validation checks to test if Distribution is negative skew.

Usage

testNegativeSkew(
object,
errormsg = paste(object$short_name, "is not negative skew")

)

checkNegativeSkew(
object,
errormsg = paste(object$short_name, "is not negative skew")

)

assertNegativeSkew(
object,
errormsg = paste(object$short_name, "is not negative skew")

)

252 testNoSkew

Arguments

object Distribution

errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert
stops code with error, check returns an error message as string, test returns FALSE.

Examples

testNegativeSkew(Binomial$new())

testNoSkew assert/check/test/NoSkew

Description

Validation checks to test if Distribution is no skew.

Usage

testNoSkew(object, errormsg = paste(object$short_name, "is not no skew"))

checkNoSkew(object, errormsg = paste(object$short_name, "is not no skew"))

assertNoSkew(object, errormsg = paste(object$short_name, "is not no skew"))

Arguments

object Distribution

errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert
stops code with error, check returns an error message as string, test returns FALSE.

Examples

testNoSkew(Binomial$new())

testParameterSet 253

testParameterSet assert/check/test/ParameterSet

Description

Validation checks to test if a given object is a ParameterSet.

Usage

testParameterSet(
object,
errormsg = paste(object, "is not an R6 ParameterSet object")

)

checkParameterSet(
object,
errormsg = paste(object, "is not an R6 ParameterSet object")

)

assertParameterSet(
object,
errormsg = paste(object, "is not an R6 ParameterSet object")

)

Arguments

object object to test

errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert
stops code with error, check returns an error message as string, test returns FALSE.

Examples

testParameterSet(5) # FALSE
testParameterSet(Binomial$new()$parameters()) # TRUE

254 testParameterSetList

testParameterSetList assert/check/test/ParameterSetList

Description

Validation checks to test if a given object is a list of ParameterSets.

Usage

testParameterSetList(
object,
errormsg = "One or more items in the list are not ParameterSets"

)

checkParameterSetList(
object,
errormsg = "One or more items in the list are not ParameterSets"

)

assertParameterSetList(
object,
errormsg = "One or more items in the list are not ParameterSets"

)

Arguments

object object to test

errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert
stops code with error, check returns an error message as string, test returns FALSE.

Examples

testParameterSetList(list(Binomial$new(), 5)) # FALSE
testParameterSetList(list(Binomial$new(), Exponential$new())) # TRUE

testPlatykurtic 255

testPlatykurtic assert/check/test/Platykurtic

Description

Validation checks to test if Distribution is platykurtic.

Usage

testPlatykurtic(
object,
errormsg = paste(object$short_name, "is not platykurtic")

)

checkPlatykurtic(
object,
errormsg = paste(object$short_name, "is not platykurtic")

)

assertPlatykurtic(
object,
errormsg = paste(object$short_name, "is not platykurtic")

)

Arguments

object Distribution

errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert
stops code with error, check returns an error message as string, test returns FALSE.

Examples

testPlatykurtic(Binomial$new())

256 testPositiveSkew

testPositiveSkew assert/check/test/PositiveSkew

Description

Validation checks to test if Distribution is positive skew.

Usage

testPositiveSkew(
object,
errormsg = paste(object$short_name, "is not positive skew")

)

checkPositiveSkew(
object,
errormsg = paste(object$short_name, "is not positive skew")

)

assertPositiveSkew(
object,
errormsg = paste(object$short_name, "is not positive skew")

)

Arguments

object Distribution

errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert
stops code with error, check returns an error message as string, test returns FALSE.

Examples

testPositiveSkew(Binomial$new())

testSymmetric 257

testSymmetric assert/check/test/Symmetric

Description

Validation checks to test if Distribution is symmetric.

Usage

testSymmetric(object, errormsg = paste(object$short_name, "is not symmetric"))

checkSymmetric(object, errormsg = paste(object$short_name, "is not symmetric"))

assertSymmetric(
object,
errormsg = paste(object$short_name, "is not symmetric")

)

Arguments

object Distribution

errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert
stops code with error, check returns an error message as string, test returns FALSE.

Examples

testSymmetric(Binomial$new()) # FALSE

testUnivariate assert/check/test/Univariate

Description

Validation checks to test if Distribution is univariate.

258 Triangular

Usage

testUnivariate(
object,
errormsg = paste(object$short_name, "is not univariate")

)

checkUnivariate(
object,
errormsg = paste(object$short_name, "is not univariate")

)

assertUnivariate(
object,
errormsg = paste(object$short_name, "is not univariate")

)

Arguments

object Distribution

errormsg custom error message to return if assert/check fails

Value

If check passes then assert returns invisibly and test/check return TRUE. If check fails, assert
stops code with error, check returns an error message as string, test returns FALSE.

Examples

testUnivariate(Binomial$new()) # TRUE

Triangular Triangular Distribution Class

Description

Mathematical and statistical functions for the Triangular distribution, which is commonly used to
model population data where only the minimum, mode and maximum are known (or can be reliably
estimated), also to model the sum of standard uniform distributions.

Details

The Triangular distribution parameterised with lower limit, a, upper limit, b, and mode, c, is defined
by the pdf,

f(x) = 0, x < a
f(x) = 2(x− a)/((b− a)(c− a)), a ≤ x < c
f(x) = 2/(b− a), x = c

Triangular 259

f(x) = 2(b− x)/((b− a)(b− c)), c < x ≤ b
f(x) = 0, x > b for a, b, c ∈ R, a ≤ c ≤ b.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on [a, b].

Default Parameterisation

Tri(lower = 0, upper = 1, mode = 0.5, symmetric = FALSE)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Triangular

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:
• Triangular$new()

• Triangular$mean()

• Triangular$mode()

• Triangular$median()

• Triangular$variance()

• Triangular$skewness()

• Triangular$kurtosis()

260 Triangular

• Triangular$entropy()

• Triangular$mgf()

• Triangular$cf()

• Triangular$pgf()

• Triangular$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Triangular$new(
lower = NULL,
upper = NULL,
mode = NULL,
symmetric = NULL,
decorators = NULL

)

Arguments:

lower (numeric(1))
Lower limit of the Distribution, defined on the Reals.

upper (numeric(1))
Upper limit of the Distribution, defined on the Reals.

mode (numeric(1))
Mode of the distribution, if symmetric = TRUE then determined automatically.

symmetric (logical(1))
If TRUE then the symmetric Triangular distribution is constructed, where the mode is au-
tomatically calculated. Otherwise mode can be set manually. Cannot be changed after
construction.

decorators (character())
Decorators to add to the distribution during construction.

Examples:

Triangular$new(lower = 2, upper = 5, symmetric = TRUE)
Triangular$new(lower = 2, upper = 5, symmetric = FALSE)
Triangular$new(lower = 2, upper = 5, mode = 4)

You can view the type of Triangular distribution with $description
Triangular$new(lower = 2, upper = 5, symmetric = TRUE)$description
Triangular$new(lower = 2, upper = 5, symmetric = FALSE)$description

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Triangular$mean(...)

Arguments:

Triangular 261

... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Triangular$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method median(): Returns the median of the distribution. If an analytical expression is avail-
able returns distribution median, otherwise if symmetric returns self$mean, otherwise returns
self$quantile(0.5).

Usage:
Triangular$median()

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Triangular$variance(...)

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Triangular$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:

262 Triangular

Triangular$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))

If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Triangular$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Triangular$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Triangular$cf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Triangular 263

Usage:
Triangular$pgf(z, ...)

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Triangular$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal,
MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Uniform, Wald, Weibull, WeightedDiscrete

Examples

--
Method `Triangular$new`
--

Triangular$new(lower = 2, upper = 5, symmetric = TRUE)
Triangular$new(lower = 2, upper = 5, symmetric = FALSE)
Triangular$new(lower = 2, upper = 5, mode = 4)

You can view the type of Triangular distribution with $description
Triangular$new(lower = 2, upper = 5, symmetric = TRUE)$description
Triangular$new(lower = 2, upper = 5, symmetric = FALSE)$description

264 TriangularKernel

TriangularKernel Triangular Kernel

Description

Mathematical and statistical functions for the Triangular kernel defined by the pdf,

f(x) = 1− |x|

over the support x ∈ (−1, 1).

Super classes

distr6::Distribution -> distr6::Kernel -> TriangularKernel

Public fields

name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.

Methods

Public methods:
• TriangularKernel$pdfSquared2Norm()

• TriangularKernel$cdfSquared2Norm()

• TriangularKernel$variance()

• TriangularKernel$clone()

Method pdfSquared2Norm(): The squared 2-norm of the pdf is defined by∫ b

a

(fX(u))2du

where X is the Distribution, fX is its pdf and a, b are the distribution support limits.
Usage:
TriangularKernel$pdfSquared2Norm(x = 0, upper = Inf)

Arguments:
x (numeric(1))

Amount to shift the result.
upper (numeric(1))

Upper limit of the integral.

Method cdfSquared2Norm(): The squared 2-norm of the cdf is defined by∫ b

a

(FX(u))2du

where X is the Distribution, FX is its pdf and a, b are the distribution support limits.

Tricube 265

Usage:
TriangularKernel$cdfSquared2Norm(x = 0, upper = 0)

Arguments:

x (numeric(1))
Amount to shift the result.

upper (numeric(1))
Upper limit of the integral.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
TriangularKernel$variance(...)

Arguments:

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TriangularKernel$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other kernels: Cosine, Epanechnikov, LogisticKernel, NormalKernel, Quartic, Sigmoid, Silverman,
Tricube, Triweight, UniformKernel

Tricube Tricube Kernel

Description

Mathematical and statistical functions for the Tricube kernel defined by the pdf,

f(x) = 70/81(1− |x|3)3

over the support x ∈ (−1, 1).

Details

The quantile function is omitted as no closed form analytic expressions could be found, decorate
with FunctionImputation for numeric results.

266 Tricube

Super classes

distr6::Distribution -> distr6::Kernel -> Tricube

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

Methods

Public methods:

• Tricube$pdfSquared2Norm()

• Tricube$cdfSquared2Norm()

• Tricube$variance()

• Tricube$clone()

Method pdfSquared2Norm(): The squared 2-norm of the pdf is defined by∫ b

a

(fX(u))2du

where X is the Distribution, fX is its pdf and a, b are the distribution support limits.

Usage:
Tricube$pdfSquared2Norm(x = 0, upper = Inf)

Arguments:

x (numeric(1))
Amount to shift the result.

upper (numeric(1))
Upper limit of the integral.

Method cdfSquared2Norm(): The squared 2-norm of the cdf is defined by∫ b

a

(FX(u))2du

where X is the Distribution, FX is its pdf and a, b are the distribution support limits.

Usage:
Tricube$cdfSquared2Norm(x = 0, upper = 0)

Arguments:

x (numeric(1))
Amount to shift the result.

upper (numeric(1))
Upper limit of the integral.

Triweight 267

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Tricube$variance(...)

Arguments:
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Tricube$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other kernels: Cosine, Epanechnikov, LogisticKernel, NormalKernel, Quartic, Sigmoid, Silverman,
TriangularKernel, Triweight, UniformKernel

Triweight Triweight Kernel

Description

Mathematical and statistical functions for the Triweight kernel defined by the pdf,

f(x) = 35/32(1− x2)3

over the support x ∈ (−1, 1).

Details

The quantile function is omitted as no closed form analytic expression could be found, decorate
with FunctionImputation for numeric results.

Super classes

distr6::Distribution -> distr6::Kernel -> Triweight

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

268 Triweight

Methods

Public methods:
• Triweight$pdfSquared2Norm()

• Triweight$cdfSquared2Norm()

• Triweight$variance()

• Triweight$clone()

Method pdfSquared2Norm(): The squared 2-norm of the pdf is defined by∫ b

a

(fX(u))2du

where X is the Distribution, fX is its pdf and a, b are the distribution support limits.

Usage:
Triweight$pdfSquared2Norm(x = 0, upper = Inf)

Arguments:

x (numeric(1))
Amount to shift the result.

upper (numeric(1))
Upper limit of the integral.

Method cdfSquared2Norm(): The squared 2-norm of the cdf is defined by∫ b

a

(FX(u))2du

where X is the Distribution, FX is its pdf and a, b are the distribution support limits.

Usage:
Triweight$cdfSquared2Norm(x = 0, upper = 0)

Arguments:

x (numeric(1))
Amount to shift the result.

upper (numeric(1))
Upper limit of the integral.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Triweight$variance(...)

Arguments:

... Unused.

truncate 269

Method clone(): The objects of this class are cloneable with this method.

Usage:
Triweight$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other kernels: Cosine, Epanechnikov, LogisticKernel, NormalKernel, Quartic, Sigmoid, Silverman,
TriangularKernel, Tricube, UniformKernel

truncate Truncate a Distribution

Description

S3 functionality to truncate an R6 distribution.

Usage

truncate(x, lower = NULL, upper = NULL)

Arguments

x Distribution.

lower lower limit for truncation.

upper upper limit for truncation.

See Also

TruncatedDistribution

TruncatedDistribution Distribution Truncation Wrapper

Description

A wrapper for truncating any probability distribution at given limits.

270 TruncatedDistribution

Details

The pdf and cdf of the distribution are required for this wrapper, if unavailable decorate with Func-
tionImputation first.

Truncates a distribution at lower and upper limits on a left-open interval, using the formulae

fT (x) = fX(x)/(FX(upper)− FX(lower))

FT (x) = (FX(x)− FX(lower))/(FX(upper)− FX(lower))

where fT /FT is the pdf/cdf of the truncated distribution T = Truncate(X, lower, upper) and fX , FX
is the pdf/cdf of the original distribution. T is supported on (].

Super classes

distr6::Distribution -> distr6::DistributionWrapper -> TruncatedDistribution

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

• TruncatedDistribution$new()

• TruncatedDistribution$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TruncatedDistribution$new(distribution, lower = NULL, upper = NULL)

Arguments:

distribution ([Distribution])
Distribution to wrap.

lower (numeric(1))
Lower limit to huberize the distribution at. If NULL then the lower bound of the Distribution
is used.

upper (numeric(1))
Upper limit to huberize the distribution at. If NULL then the upper bound of the Distribution
is used.

Examples:

TruncatedDistribution$new(
Binomial$new(prob = 0.5, size = 10),
lower = 2, upper = 4

)

alternate constructor
truncate(Binomial$new(), lower = 2, upper = 4)

Uniform 271

Method clone(): The objects of this class are cloneable with this method.

Usage:
TruncatedDistribution$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other wrappers: Convolution, DistributionWrapper, HuberizedDistribution, MixtureDistribution,
ProductDistribution, VectorDistribution

Examples

--
Method `TruncatedDistribution$new`
--

TruncatedDistribution$new(
Binomial$new(prob = 0.5, size = 10),
lower = 2, upper = 4

)

alternate constructor
truncate(Binomial$new(), lower = 2, upper = 4)

Uniform Uniform Distribution Class

Description

Mathematical and statistical functions for the Uniform distribution, which is commonly used to
model continuous events occurring with equal probability, as an uninformed prior in Bayesian mod-
elling, and for inverse transform sampling.

Details

The Uniform distribution parameterised with lower, a, and upper, b, limits is defined by the pdf,

f(x) = 1/(b− a)

for −∞ < a < b <∞.

Value

Returns an R6 object inheriting from class SDistribution.

272 Uniform

Distribution support

The distribution is supported on [a, b].

Default Parameterisation

Unif(lower = 0, upper = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Uniform

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:
• Uniform$new()

• Uniform$mean()

• Uniform$mode()

• Uniform$variance()

• Uniform$skewness()

• Uniform$kurtosis()

• Uniform$entropy()

• Uniform$mgf()

• Uniform$cf()

• Uniform$pgf()

• Uniform$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

Uniform 273

Uniform$new(lower = NULL, upper = NULL, decorators = NULL)

Arguments:

lower (numeric(1))
Lower limit of the Distribution, defined on the Reals.

upper (numeric(1))
Upper limit of the Distribution, defined on the Reals.

decorators (character())
Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Uniform$mean(...)

Arguments:

... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Uniform$mode(which = "all")

Arguments:

which (character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Uniform$variance(...)

Arguments:

... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

274 Uniform

Usage:
Uniform$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Uniform$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))

If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Uniform$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Uniform$mgf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

Uniform 275

Usage:
Uniform$cf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Uniform$pgf(z, ...)

Arguments:
z (integer(1))

z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Uniform$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Yumi Zhou

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal,
MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Wald, Weibull, WeightedDiscrete

276 UniformKernel

UniformKernel Uniform Kernel

Description

Mathematical and statistical functions for the Uniform kernel defined by the pdf,

f(x) = 1/2

over the support x ∈ (−1, 1).

Super classes

distr6::Distribution -> distr6::Kernel -> UniformKernel

Public fields

name Full name of distribution.
short_name Short name of distribution for printing.
description Brief description of the distribution.

Methods

Public methods:
• UniformKernel$pdfSquared2Norm()

• UniformKernel$cdfSquared2Norm()

• UniformKernel$variance()

• UniformKernel$clone()

Method pdfSquared2Norm(): The squared 2-norm of the pdf is defined by∫ b

a

(fX(u))2du

where X is the Distribution, fX is its pdf and a, b are the distribution support limits.
Usage:
UniformKernel$pdfSquared2Norm(x = 0, upper = Inf)

Arguments:
x (numeric(1))

Amount to shift the result.
upper (numeric(1))

Upper limit of the integral.

Method cdfSquared2Norm(): The squared 2-norm of the cdf is defined by∫ b

a

(FX(u))2du

where X is the Distribution, FX is its pdf and a, b are the distribution support limits.

VectorDistribution 277

Usage:
UniformKernel$cdfSquared2Norm(x = 0, upper = 0)

Arguments:
x (numeric(1))

Amount to shift the result.
upper (numeric(1))

Upper limit of the integral.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
UniformKernel$variance(...)

Arguments:
... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
UniformKernel$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other kernels: Cosine, Epanechnikov, LogisticKernel, NormalKernel, Quartic, Sigmoid, Silverman,
TriangularKernel, Tricube, Triweight

VectorDistribution Vectorise Distributions

Description

A wrapper for creating a vector of distributions.

Details

A vector distribution is intented to vectorize distributions more efficiently than storing a list of
distributions. To improve speed and reduce memory usage, distributions are only constructed when
methods (e.g. d/p/q/r) are called.

Super classes

distr6::Distribution -> distr6::DistributionWrapper -> VectorDistribution

278 VectorDistribution

Active bindings

modelTable Returns reference table of wrapped Distributions.

distlist Returns list of constructed wrapped Distributions.

ids Returns ids of constructed wrapped Distributions.

Methods

Public methods:

• VectorDistribution$new()

• VectorDistribution$getParameterValue()

• VectorDistribution$wrappedModels()

• VectorDistribution$strprint()

• VectorDistribution$mean()

• VectorDistribution$mode()

• VectorDistribution$median()

• VectorDistribution$variance()

• VectorDistribution$skewness()

• VectorDistribution$kurtosis()

• VectorDistribution$entropy()

• VectorDistribution$mgf()

• VectorDistribution$cf()

• VectorDistribution$pgf()

• VectorDistribution$pdf()

• VectorDistribution$cdf()

• VectorDistribution$quantile()

• VectorDistribution$rand()

• VectorDistribution$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
VectorDistribution$new(
distlist = NULL,
distribution = NULL,
params = NULL,
shared_params = NULL,
name = NULL,
short_name = NULL,
decorators = NULL,
vecdist = NULL,
ids = NULL,
...

)

Arguments:

VectorDistribution 279

distlist (list())
List of Distributions.

distribution (character(1))
Should be supplied with params and optionally shared_params as an alternative to distlist.
Much faster implementation when only one class of distribution is being wrapped. distribution
is the full name of one of the distributions in listDistributions(), or "Distribution"
if constructing custom distributions. See examples in VectorDistribution.

params (list()|data.frame())
Parameters in the individual distributions for use with distribution. Can be supplied as
a list, where each element is the list of parameters to set in the distribution, or as an object
coercable to data.frame, where each column is a parameter and each row is a distribution.
See examples in VectorDistribution.

shared_params (list())
If any parameters are shared when using the distribution constructor, this provides a
much faster implementation to list and query them together. See examples in VectorDistri-
bution.

name (character(1))
Optional name of wrapped distribution.

short_name (character(1))
Optional short name/ID of wrapped distribution.

decorators (character())
Decorators to add to the distribution during construction.

vecdist VectorDistribution
Alternative constructor to directly create this object from an object inheriting from Vec-
torDistribution.

ids (character())
Optional ids for wrapped distributions in vector, should be unique and of same length as the
number of distributions.

... Unused

Examples:
\dontrun{
VectorDistribution$new(
distribution = "Binomial",
params = list(
list(prob = 0.1, size = 2),
list(prob = 0.6, size = 4),
list(prob = 0.2, size = 6)

)
)

VectorDistribution$new(
distribution = "Binomial",
params = data.table::data.table(prob = c(0.1, 0.6, 0.2), size = c(2, 4, 6))

)

Alternatively
VectorDistribution$new(

280 VectorDistribution

list(
Binomial$new(prob = 0.1, size = 2),
Binomial$new(prob = 0.6, size = 4),
Binomial$new(prob = 0.2, size = 6)
)

)
}

Method getParameterValue(): Returns the value of the supplied parameter.

Usage:
VectorDistribution$getParameterValue(id, ...)

Arguments:

id character()
id of parameter value to return.

... Unused

Method wrappedModels(): Returns model(s) wrapped by this wrapper.

Usage:
VectorDistribution$wrappedModels(model = NULL)

Arguments:

model (character(1))
id of wrapped Distributions to return. If NULL (default), a list of all wrapped Distributions
is returned; if only one Distribution is matched then this is returned, otherwise a list of
Distributions.

Method strprint(): Printable string representation of the VectorDistribution. Primarily
used internally.

Usage:
VectorDistribution$strprint(n = 10)

Arguments:

n (integer(1))
Number of distributions to include when printing.

Method mean(): Returns named vector of means from each wrapped Distribution.

Usage:
VectorDistribution$mean(...)

Arguments:

... Passed to CoreStatistics$genExp if numeric.

Method mode(): Returns named vector of modes from each wrapped Distribution.

Usage:
VectorDistribution$mode(which = "all")

Arguments:

VectorDistribution 281

which (character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method median(): Returns named vector of medians from each wrapped Distribution.

Usage:
VectorDistribution$median()

Method variance(): Returns named vector of variances from each wrapped Distribution.

Usage:
VectorDistribution$variance(...)

Arguments:

... Passed to CoreStatistics$genExp if numeric.

Method skewness(): Returns named vector of skewness from each wrapped Distribution.

Usage:
VectorDistribution$skewness(...)

Arguments:

... Passed to CoreStatistics$genExp if numeric.

Method kurtosis(): Returns named vector of kurtosis from each wrapped Distribution.

Usage:
VectorDistribution$kurtosis(excess = TRUE, ...)

Arguments:

excess (logical(1))
If TRUE (default) excess kurtosis returned.

... Passed to CoreStatistics$genExp if numeric.

Method entropy(): Returns named vector of entropy from each wrapped Distribution.

Usage:
VectorDistribution$entropy(base = 2, ...)

Arguments:

base (integer(1))
Base of the entropy logarithm, default = 2 (Shannon entropy)

... Passed to CoreStatistics$genExp if numeric.

Method mgf(): Returns named vector of mgf from each wrapped Distribution.

Usage:
VectorDistribution$mgf(t, ...)

Arguments:

t (integer(1))
t integer to evaluate function at.

... Passed to CoreStatistics$genExp if numeric.

282 VectorDistribution

Method cf(): Returns named vector of cf from each wrapped Distribution.

Usage:
VectorDistribution$cf(t, ...)

Arguments:

t (integer(1))
t integer to evaluate function at.

... Passed to CoreStatistics$genExp if numeric.

Method pgf(): Returns named vector of pgf from each wrapped Distribution.

Usage:
VectorDistribution$pgf(z, ...)

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

... Passed to CoreStatistics$genExp if numeric.

Method pdf(): Returns named vector of pdfs from each wrapped Distribution.

Usage:
VectorDistribution$pdf(..., log = FALSE, simplify = TRUE, data = NULL)

Arguments:

... (numeric())
Points to evaluate the function at Arguments do not need to be named. The length of each
argument corresponds to the number of points to evaluate, the number of arguments corre-
sponds to the number of variables in the distribution. See examples.

log (logical(1))
If TRUE returns the logarithm of the probabilities. Default is FALSE.

simplify logical(1)
If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

data array
Alternative method to specify points to evaluate. If univariate then rows correspond with
number of points to evaluate and columns correspond with number of variables to evalu-
ate. In the special case of VectorDistributions of multivariate distributions, then the third
dimension corresponds to the distribution in the vector to evaluate.

Examples:

vd <- VectorDistribution$new(
distribution = "Binomial",
params = data.frame(size = 9:10, prob = c(0.5,0.6)))

vd$pdf(2)
Equivalently
vd$pdf(2, 2)

vd$pdf(1:2, 3:4)
or as a matrix

VectorDistribution 283

vd$pdf(data = matrix(1:4, nrow = 2))

when wrapping multivariate distributions, arrays are required
vd <- VectorDistribution$new(
distribution = "Multinomial",
params = list(
list(size = 5, probs = c(0.1, 0.9)),
list(size = 8, probs = c(0.3, 0.7))
)
)

evaluates Multinom1 and Multinom2 at (1, 4)
vd$pdf(1, 4)

evaluates Multinom1 at (1, 4) and Multinom2 at (5, 3)
vd$pdf(data = array(c(1,4,5,3), dim = c(1,2,2)))

and the same across many samples
vd$pdf(data = array(c(1,2,4,3,5,1,3,7), dim = c(2,2,2)))

Method cdf(): Returns named vector of cdfs from each wrapped Distribution. Same usage as
$pdf.

Usage:

VectorDistribution$cdf(
...,
lower.tail = TRUE,
log.p = FALSE,
simplify = TRUE,
data = NULL

)

Arguments:

... (numeric())
Points to evaluate the function at Arguments do not need to be named. The length of each
argument corresponds to the number of points to evaluate, the number of arguments corre-
sponds to the number of variables in the distribution. See examples.

lower.tail (logical(1))
If TRUE (default), probabilities are X <= x, otherwise, P(X > x).

log.p (logical(1))
If TRUE returns the logarithm of the probabilities. Default is FALSE.

simplify logical(1)
If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

data array
Alternative method to specify points to evaluate. If univariate then rows correspond with
number of points to evaluate and columns correspond with number of variables to evalu-
ate. In the special case of VectorDistributions of multivariate distributions, then the third
dimension corresponds to the distribution in the vector to evaluate.

284 VectorDistribution

Method quantile(): Returns named vector of quantiles from each wrapped Distribution. Same
usage as $cdf.

Usage:
VectorDistribution$quantile(
...,
lower.tail = TRUE,
log.p = FALSE,
simplify = TRUE,
data = NULL

)

Arguments:
... (numeric())

Points to evaluate the function at Arguments do not need to be named. The length of each
argument corresponds to the number of points to evaluate, the number of arguments corre-
sponds to the number of variables in the distribution. See examples.

lower.tail (logical(1))
If TRUE (default), probabilities are X <= x, otherwise, P(X > x).

log.p (logical(1))
If TRUE returns the logarithm of the probabilities. Default is FALSE.

simplify logical(1)
If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

data array
Alternative method to specify points to evaluate. If univariate then rows correspond with
number of points to evaluate and columns correspond with number of variables to evalu-
ate. In the special case of VectorDistributions of multivariate distributions, then the third
dimension corresponds to the distribution in the vector to evaluate.

Method rand(): Returns data.table::data.table of draws from each wrapped Distribution.

Usage:
VectorDistribution$rand(n, simplify = TRUE)

Arguments:
n (numeric(1))

Number of points to simulate from the distribution. If length greater than 1, then n <-length(n),
simplify logical(1)

If TRUE (default) simplifies the return if possible to a numeric, otherwise returns a data.table::data.table.

Method clone(): The objects of this class are cloneable with this method.

Usage:
VectorDistribution$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other wrappers: Convolution, DistributionWrapper, HuberizedDistribution, MixtureDistribution,
ProductDistribution, TruncatedDistribution

VectorDistribution 285

Examples

--
Method `VectorDistribution$new`
--

Not run:
VectorDistribution$new(

distribution = "Binomial",
params = list(
list(prob = 0.1, size = 2),
list(prob = 0.6, size = 4),
list(prob = 0.2, size = 6)

)
)

VectorDistribution$new(
distribution = "Binomial",
params = data.table::data.table(prob = c(0.1, 0.6, 0.2), size = c(2, 4, 6))

)

Alternatively
VectorDistribution$new(

list(
Binomial$new(prob = 0.1, size = 2),
Binomial$new(prob = 0.6, size = 4),
Binomial$new(prob = 0.2, size = 6)
)

)

End(Not run)

--
Method `VectorDistribution$pdf`
--

vd <- VectorDistribution$new(
distribution = "Binomial",
params = data.frame(size = 9:10, prob = c(0.5,0.6)))

vd$pdf(2)
Equivalently
vd$pdf(2, 2)

vd$pdf(1:2, 3:4)
or as a matrix
vd$pdf(data = matrix(1:4, nrow = 2))

when wrapping multivariate distributions, arrays are required
vd <- VectorDistribution$new(
distribution = "Multinomial",
params = list(

286 Wald

list(size = 5, probs = c(0.1, 0.9)),
list(size = 8, probs = c(0.3, 0.7))
)
)

evaluates Multinom1 and Multinom2 at (1, 4)
vd$pdf(1, 4)

evaluates Multinom1 at (1, 4) and Multinom2 at (5, 3)
vd$pdf(data = array(c(1,4,5,3), dim = c(1,2,2)))

and the same across many samples
vd$pdf(data = array(c(1,2,4,3,5,1,3,7), dim = c(2,2,2)))

Wald Wald Distribution Class

Description

Mathematical and statistical functions for the Wald distribution, which is commonly used for mod-
elling the first passage time for Brownian motion.

Details

The Wald distribution parameterised with mean, µ, and shape, λ, is defined by the pdf,

f(x) = (λ/(2x3π))1/2exp((−λ(x− µ)2)/(2µ2x))

for λ > 0 and µ > 0.

Sampling is performed as per Michael, Schucany, Haas (1976).

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Positive Reals.

Default Parameterisation

Wald(mean = 1, shape = 1)

Omitted Methods

quantile is omitted as no closed form analytic expression could be found, decorate with FunctionImputation
for a numerical imputation.

Wald 287

Also known as

Also known as the Inverse Normal distribution.

Super classes

distr6::Distribution -> distr6::SDistribution -> Wald

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:
• Wald$new()

• Wald$mean()

• Wald$mode()

• Wald$variance()

• Wald$skewness()

• Wald$kurtosis()

• Wald$mgf()

• Wald$cf()

• Wald$pgf()

• Wald$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Wald$new(mean = NULL, shape = NULL, decorators = NULL)

Arguments:
mean (numeric(1))

Mean of the distribution, location parameter, defined on the positive Reals.
shape (numeric(1))

Shape parameter, defined on the positive Reals.
decorators (character())

Decorators to add to the distribution during construction.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:

288 Wald

Wald$mean(...)

Arguments:

... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Wald$mode(which = "all")

Arguments:

which (character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Wald$variance(...)

Arguments:

... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Wald$skewness(...)

Arguments:

... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Wald$kurtosis(excess = TRUE, ...)

Arguments:

Wald 289

excess (logical(1))
If TRUE (default) excess kurtosis returned.

... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Wald$mgf(t, ...)

Arguments:

t (integer(1))
t integer to evaluate function at.

... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Wald$cf(t, ...)

Arguments:

t (integer(1))
t integer to evaluate function at.

... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Wald$pgf(z, ...)

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Wald$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

290 Weibull

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

Michael, J. R., Schucany, W. R., & Haas, R. W. (1976). Generating random variates using transfor-
mations with multiple roots. The American Statistician, 30(2), 88-90.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal,
MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Weibull, WeightedDiscrete

Weibull Weibull Distribution Class

Description

Mathematical and statistical functions for the Weibull distribution, which is commonly used in
survival analysis as it satisfies both PH and AFT requirements.

Details

The Weibull distribution parameterised with shape, α, and scale, β, is defined by the pdf,

f(x) = (α/β)(x/β)α−1exp(−x/β)α

for α, β > 0.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Positive Reals.

Default Parameterisation

Weibull(shape = 1, scale = 1)

Weibull 291

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Weibull

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

packages Packages required to be installed in order to construct the distribution.

Methods

Public methods:

• Weibull$new()

• Weibull$mean()

• Weibull$mode()

• Weibull$median()

• Weibull$variance()

• Weibull$skewness()

• Weibull$kurtosis()

• Weibull$entropy()

• Weibull$pgf()

• Weibull$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Weibull$new(shape = NULL, scale = NULL, altscale = NULL, decorators = NULL)

Arguments:

shape (numeric(1))
Shape parameter, defined on the positive Reals.

scale (numeric(1))
Scale parameter, defined on the positive Reals.

altscale (numeric(1))
Alternative scale parameter, if given then scale is ignored. altscale = scale^-shape.

decorators (character())
Decorators to add to the distribution during construction.

292 Weibull

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
Weibull$mean(...)

Arguments:

... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
Weibull$mode(which = "all")

Arguments:

which (character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method median(): Returns the median of the distribution. If an analytical expression is avail-
able returns distribution median, otherwise if symmetric returns self$mean, otherwise returns
self$quantile(0.5).

Usage:
Weibull$median()

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
Weibull$variance(...)

Arguments:

... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
Weibull$skewness(...)

Arguments:

Weibull 293

... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
Weibull$kurtosis(excess = TRUE, ...)

Arguments:

excess (logical(1))
If TRUE (default) excess kurtosis returned.

... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
Weibull$entropy(base = 2, ...)

Arguments:

base (integer(1))
Base of the entropy logarithm, default = 2 (Shannon entropy)

... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
Weibull$pgf(z, ...)

Arguments:

z (integer(1))
z integer to evaluate probability generating function at.

... Unused.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Weibull$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

294 WeightedDiscrete

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral,
ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution,
Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal,
MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, WeightedDiscrete

WeightedDiscrete WeightedDiscrete Distribution Class

Description

Mathematical and statistical functions for the WeightedDiscrete distribution, which is commonly
used in empirical estimators such as Kaplan-Meier.

Details

The WeightedDiscrete distribution is defined by the pmf,

f(xi) = pi

for pi, i = 1, . . . , k;
∑
pi = 1.

Sampling from this distribution is performed with the sample function with the elements given as
the x values and the pdf as the probabilities. The cdf and quantile assume that the elements are
supplied in an indexed order (otherwise the results are meaningless).

The number of points in the distribution cannot be changed after construction.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on x1, ..., xk.

WeightedDiscrete 295

Default Parameterisation

WeightDisc(x = 1, pdf = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> WeightedDiscrete

Public fields

name Full name of distribution.

short_name Short name of distribution for printing.

description Brief description of the distribution.

Active bindings

properties Returns distribution properties, including skewness type and symmetry.

Methods

Public methods:

• WeightedDiscrete$new()

• WeightedDiscrete$strprint()

• WeightedDiscrete$mean()

• WeightedDiscrete$mode()

• WeightedDiscrete$variance()

• WeightedDiscrete$skewness()

• WeightedDiscrete$kurtosis()

• WeightedDiscrete$entropy()

• WeightedDiscrete$mgf()

• WeightedDiscrete$cf()

• WeightedDiscrete$pgf()

• WeightedDiscrete$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
WeightedDiscrete$new(x = NULL, pdf = NULL, cdf = NULL, decorators = NULL)

Arguments:

296 WeightedDiscrete

x numeric()
Data samples, must be ordered in ascending order.

pdf numeric()
Probability mass function for corresponding samples, should be same length x. If cdf is not
given then calculated as cumsum(pdf).

cdf numeric()
Cumulative distribution function for corresponding samples, should be same length x. If
given then pdf is ignored and calculated as difference of cdfs.

decorators (character())
Decorators to add to the distribution during construction.

Method strprint(): Printable string representation of the Distribution. Primarily used
internally.

Usage:
WeightedDiscrete$strprint(n = 2)

Arguments:
n (integer(1))

Ignored.

Method mean(): The arithmetic mean of a (discrete) probability distribution X is the expectation

EX(X) =
∑

pX(x) ∗ x

with an integration analogue for continuous distributions.

Usage:
WeightedDiscrete$mean(...)

Arguments:
... Unused.

Method mode(): The mode of a probability distribution is the point at which the pdf is a local
maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage:
WeightedDiscrete$mode(which = "all")

Arguments:
which (character(1) | numeric(1)

Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies
which mode to return.

Method variance(): The variance of a distribution is defined by the formula

varX = E[X2]− E[X]2

where EX is the expectation of distribution X. If the distribution is multivariate the covariance
matrix is returned.

Usage:
WeightedDiscrete$variance(...)

WeightedDiscrete 297

Arguments:
... Unused.

Method skewness(): The skewness of a distribution is defined by the third standardised mo-
ment,

skX = EX [
x− µ
σ

3

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution.

Usage:
WeightedDiscrete$skewness(...)

Arguments:
... Unused.

Method kurtosis(): The kurtosis of a distribution is defined by the fourth standardised mo-
ment,

kX = EX [
x− µ
σ

4

]

where EX is the expectation of distribution X, µ is the mean of the distribution and σ is the
standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage:
WeightedDiscrete$kurtosis(excess = TRUE, ...)

Arguments:
excess (logical(1))

If TRUE (default) excess kurtosis returned.
... Unused.

Method entropy(): The entropy of a (discrete) distribution is defined by

−
∑

(fX)log(fX)

where fX is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage:
WeightedDiscrete$entropy(base = 2, ...)

Arguments:
base (integer(1))

Base of the entropy logarithm, default = 2 (Shannon entropy)
... Unused.

Method mgf(): The moment generating function is defined by

mgfX(t) = EX [exp(xt)]

where X is the distribution and EX is the expectation of the distribution X.

Usage:
WeightedDiscrete$mgf(t, ...)

298 WeightedDiscrete

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method cf(): The characteristic function is defined by

cfX(t) = EX [exp(xti)]

where X is the distribution and EX is the expectation of the distribution X.
Usage:
WeightedDiscrete$cf(t, ...)

Arguments:
t (integer(1))

t integer to evaluate function at.
... Unused.

Method pgf(): The probability generating function is defined by

pgfX(z) = EX [exp(zx)]

where X is the distribution and EX is the expectation of the distribution X.
Usage:
WeightedDiscrete$pgf(z, ...)

Arguments:
z (integer(1))

z integer to evaluate probability generating function at.
... Unused.

Method clone(): The objects of this class are cloneable with this method.
Usage:
WeightedDiscrete$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01).
Michael P. McLaughlin.

See Also

Other discrete distributions: Bernoulli, Binomial, Categorical, Degenerate, DiscreteUniform,
EmpiricalMV, Empirical, Geometric, Hypergeometric, Logarithmic, Multinomial, NegativeBinomial

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical,
Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang,
Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz,
Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal,
NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral,
StudentT, Triangular, Uniform, Wald, Weibull

[.VectorDistribution 299

Examples

x <- WeightedDiscrete$new(x = 1:3, pdf = c(1 / 5, 3 / 5, 1 / 5))
WeightedDiscrete$new(x = 1:3, cdf = c(1 / 5, 4 / 5, 1)) # equivalently

d/p/q/r
x$pdf(1:5)
x$cdf(1:5) # Assumes ordered in construction
x$quantile(0.42) # Assumes ordered in construction
x$rand(10)

Statistics
x$mean()
x$variance()

summary(x)

[.VectorDistribution Extract one or more Distributions from a VectorDistribution

Description

Once a VectorDistribution has been constructed, use [to extract one or more Distributions
from inside it.

Usage

S3 method for class 'VectorDistribution'
vecdist[i]

Arguments

vecdist VectorDistribution from which to extract Distributions.

i indices specifying distributions to extract or ids of wrapped distributions.

Examples

v <- VectorDistribution$new(distribution = "Binom", params = data.frame(size = 1:2, prob = 0.5))
v[1]
v["Binom1"]

Index

∗ continuous distributions
Arcsine, 7
Beta, 18
BetaNoncentral, 22
Cauchy, 34
ChiSquared, 39
ChiSquaredNoncentral, 43
Dirichlet, 59
Erlang, 92
Exponential, 101
FDistribution, 106
FDistributionNoncentral, 110
Frechet, 113
Gamma, 118
Gompertz, 129
Gumbel, 131
InverseGamma, 142
Laplace, 148
Logistic, 161
Loglogistic, 167
Lognormal, 171
MultivariateNormal, 188
Normal, 197
Pareto, 203
Poisson, 210
Rayleigh, 223
ShiftedLoglogistic, 228
StudentT, 237
StudentTNoncentral, 241
Triangular, 258
Uniform, 271
Wald, 286
Weibull, 290

∗ decorators
CoreStatistics, 48
ExoticStatistics, 97
FunctionImputation, 117

∗ discrete distributions
Bernoulli, 13

Binomial, 24
Categorical, 29
Degenerate, 55
DiscreteUniform, 62
Empirical, 82
EmpiricalMV, 87
Geometric, 124
Hypergeometric, 138
Logarithmic, 157
Multinomial, 183
NegativeBinomial, 192
WeightedDiscrete, 294

∗ kernels
Cosine, 52
Epanechnikov, 90
LogisticKernel, 165
NormalKernel, 201
Quartic, 221
Sigmoid, 232
Silverman, 234
TriangularKernel, 264
Tricube, 265
Triweight, 267
UniformKernel, 276

∗ multivariate distributions
Dirichlet, 59
EmpiricalMV, 87
Multinomial, 183
MultivariateNormal, 188

∗ univariate distributions
Arcsine, 7
Bernoulli, 13
Beta, 18
BetaNoncentral, 22
Binomial, 24
Categorical, 29
Cauchy, 34
ChiSquared, 39
ChiSquaredNoncentral, 43

300

INDEX 301

Degenerate, 55
DiscreteUniform, 62
Empirical, 82
Erlang, 92
Exponential, 101
FDistribution, 106
FDistributionNoncentral, 110
Frechet, 113
Gamma, 118
Geometric, 124
Gompertz, 129
Gumbel, 131
Hypergeometric, 138
InverseGamma, 142
Laplace, 148
Logarithmic, 157
Logistic, 161
Loglogistic, 167
Lognormal, 171
NegativeBinomial, 192
Normal, 197
Pareto, 203
Poisson, 210
Rayleigh, 223
ShiftedLoglogistic, 228
StudentT, 237
StudentTNoncentral, 241
Triangular, 258
Uniform, 271
Wald, 286
Weibull, 290
WeightedDiscrete, 294

∗ wrappers
Convolution, 47
DistributionWrapper, 78
HuberizedDistribution, 136
MixtureDistribution, 177
ProductDistribution, 214
TruncatedDistribution, 269
VectorDistribution, 277

*.Distribution (ProductDistribution),
214

+.Distribution (Convolution), 47
-.Distribution (Convolution), 47
[.VectorDistribution, 299

Arcsine, 7, 17, 21, 24, 28, 34, 38, 43, 46, 58,
62, 67, 87, 96, 105, 106, 110, 112,
116, 123, 128, 131, 135, 142, 146,

152, 161, 165, 171, 176, 192, 197,
201, 207, 214, 226, 232, 241, 244,
263, 275, 290, 294, 298

array, 72, 73, 99, 100, 179–181, 217, 218,
282–284

as.Distribution, 11
as.MixtureDistribution, 12
as.ProductDistribution, 12
as.VectorDistribution, 13
assertContinuous (testContinuous), 244
assertDiscrete (testDiscrete), 245
assertDistribution (testDistribution),

245
assertDistributionList

(testDistributionList), 246
assertLeptokurtic (testLeptokurtic), 247
assertMatrixvariate

(testMatrixvariate), 248
assertMesokurtic (testMesokurtic), 249
assertMixture (testMixture), 250
assertMultivariate (testMultivariate),

250
assertNegativeSkew (testNegativeSkew),

251
assertNoSkew (testNoSkew), 252
assertParameterSet (testParameterSet),

253
assertParameterSetList

(testParameterSetList), 254
assertPlatykurtic (testPlatykurtic), 255
assertPositiveSkew (testPositiveSkew),

256
assertSymmetric (testSymmetric), 257
assertUnivariate (testUnivariate), 257

Bernoulli, 11, 13, 21, 24, 28, 34, 38, 43, 46,
58, 67, 87, 90, 96, 106, 110, 112,
116, 123, 128, 131, 135, 142, 146,
152, 161, 165, 171, 176, 187, 197,
201, 207, 214, 226, 232, 241, 244,
263, 275, 290, 294, 298

Beta, 10, 11, 17, 18, 24, 28, 34, 38, 43, 46, 58,
62, 67, 87, 96, 105, 106, 110, 112,
116, 123, 128, 131, 135, 142, 146,
152, 161, 165, 171, 176, 192, 197,
201, 207, 214, 226, 232, 241, 244,
263, 275, 290, 294, 298

BetaNoncentral, 10, 11, 17, 21, 22, 28, 34,
38, 43, 46, 58, 62, 67, 87, 96, 105,

302 INDEX

106, 110, 112, 116, 123, 128, 131,
135, 142, 146, 152, 161, 165, 171,
176, 192, 197, 201, 207, 214, 226,
232, 241, 244, 263, 275, 290, 294,
298

Binomial, 11, 17, 21, 24, 24, 34, 38, 43, 46,
58, 67, 87, 90, 96, 106, 110, 112,
116, 123, 128, 131, 135, 142, 146,
152, 161, 165, 171, 176, 187, 197,
201, 207, 214, 226, 232, 241, 244,
263, 275, 290, 294, 298

c.Distribution, 28
Categorical, 11, 17, 21, 24, 28, 29, 38, 43,

46, 58, 67, 87, 90, 96, 106, 110, 112,
116, 123, 128, 131, 135, 142, 146,
152, 161, 165, 171, 176, 187, 197,
201, 207, 214, 226, 232, 241, 244,
263, 275, 290, 294, 298

Cauchy, 10, 11, 17, 21, 24, 28, 34, 34, 43, 46,
58, 62, 67, 87, 96, 105, 106, 110,
112, 116, 123, 128, 131, 135, 142,
146, 152, 161, 165, 171, 176, 192,
197, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298

checkContinuous (testContinuous), 244
checkDiscrete (testDiscrete), 245
checkDistribution (testDistribution),

245
checkDistributionList

(testDistributionList), 246
checkLeptokurtic (testLeptokurtic), 247
checkMatrixvariate (testMatrixvariate),

248
checkMesokurtic (testMesokurtic), 249
checkMixture (testMixture), 250
checkMultivariate (testMultivariate),

250
checkNegativeSkew (testNegativeSkew),

251
checkNoSkew (testNoSkew), 252
checkParameterSet (testParameterSet),

253
checkParameterSetList

(testParameterSetList), 254
checkPlatykurtic (testPlatykurtic), 255
checkPositiveSkew (testPositiveSkew),

256
checkSymmetric (testSymmetric), 257

checkUnivariate (testUnivariate), 257
ChiSquared, 10, 11, 17, 21, 24, 28, 34, 38, 39,

46, 58, 62, 67, 87, 96, 105, 106, 110,
112, 116, 123, 128, 131, 135, 142,
146, 152, 161, 165, 171, 176, 192,
197, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298

ChiSquaredNoncentral, 10, 11, 17, 21, 24,
28, 34, 38, 43, 43, 58, 62, 67, 87, 96,
105, 106, 110, 112, 116, 123, 128,
131, 135, 142, 146, 152, 161, 165,
171, 176, 192, 197, 201, 207, 214,
226, 232, 241, 244, 263, 275, 290,
294, 298

chol, 188
Convolution, 47, 80, 137, 181, 219, 271, 284
CoreStatistics, 48, 101, 118, 280–282
Cosine, 52, 92, 167, 203, 222, 233, 235, 265,

267, 269, 277
cubature::cubintegrate, 51

data.table::data.table, 72–74, 99, 100,
179–181, 217, 218, 220, 282–284

data.table::data.table(), 208
decorate, 54, 77
Degenerate, 11, 17, 21, 24, 28, 34, 38, 43, 46,

55, 67, 87, 90, 96, 106, 110, 112,
116, 123, 128, 131, 135, 142, 146,
152, 161, 165, 171, 176, 187, 197,
201, 207, 214, 226, 232, 241, 244,
263, 275, 290, 294, 298

Delta (Degenerate), 55
Dirac (Degenerate), 55
Dirichlet, 10, 21, 24, 38, 43, 46, 59, 90, 96,

105, 110, 112, 116, 123, 131, 135,
146, 152, 165, 171, 176, 187, 192,
201, 207, 214, 226, 232, 241, 244,
263, 275, 290, 294

DiscreteUniform, 11, 17, 21, 24, 28, 34, 38,
43, 46, 58, 62, 87, 90, 96, 106, 110,
112, 116, 123, 128, 131, 135, 142,
146, 152, 161, 165, 171, 176, 187,
197, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298

distr6 (distr6-package), 6
distr6-package, 6
distr6::Distribution, 8, 14, 18, 22, 25, 30,

35, 39, 44, 47, 52, 55, 59, 63, 78, 83,
88, 90, 93, 102, 106, 111, 113, 119,

INDEX 303

125, 129, 132, 136, 139, 143, 146,
149, 157, 161, 165, 168, 172, 177,
184, 188, 193, 198, 202, 204, 211,
214, 221, 223, 227, 229, 232, 234,
238, 242, 259, 264, 266, 267, 270,
272, 276, 277, 287, 291, 295

distr6::DistributionDecorator, 49, 97,
117

distr6::DistributionWrapper, 47, 136,
177, 214, 270, 277

distr6::Kernel, 52, 90, 165, 202, 221, 232,
234, 264, 266, 267, 276

distr6::SDistribution, 8, 14, 18, 22, 25,
30, 35, 39, 44, 55, 59, 63, 83, 88, 93,
102, 106, 111, 113, 119, 125, 129,
132, 139, 143, 149, 157, 161, 168,
172, 184, 188, 193, 198, 204, 211,
223, 229, 238, 242, 259, 272, 287,
291, 295

distr6::VectorDistribution, 177, 214
distr6News, 67
Distribution, 8, 47, 48, 54, 64, 67, 78–80,

97, 117, 137, 178, 214, 215, 227,
245, 246, 260, 270, 273, 278–284

DistributionDecorator, 54, 77, 154, 155
DistributionWrapper, 48, 78, 137, 157, 181,

219, 271, 284
distrSimulate, 80
dstr, 81
dstrs (dstr), 81

Empirical, 11, 17, 21, 24, 28, 34, 38, 43, 46,
58, 67, 82, 90, 96, 106, 110, 112,
116, 123, 128, 131, 135, 142, 146,
152, 161, 165, 171, 176, 187, 197,
201, 207, 214, 220, 226, 232, 236,
241, 244, 263, 275, 290, 294, 298

EmpiricalMV, 17, 28, 34, 58, 62, 67, 87, 87,
128, 142, 161, 187, 192, 197, 298

Epanechnikov, 53, 90, 167, 203, 222, 233,
235, 265, 267, 269, 277

Erlang, 10, 11, 17, 21, 24, 28, 34, 38, 43, 46,
58, 62, 67, 87, 92, 105, 106, 110,
112, 116, 123, 128, 131, 135, 142,
146, 152, 161, 165, 171, 176, 192,
197, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298

exkurtosisType, 96
ExoticStatistics, 51, 97, 118

Exponential, 10, 11, 17, 21, 24, 28, 34, 38,
43, 46, 58, 62, 67, 87, 96, 101, 110,
112, 116, 123, 128, 131, 135, 142,
146, 152, 161, 165, 171, 176, 192,
197, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298

FDistribution, 10, 11, 17, 21, 24, 28, 34, 38,
43, 46, 58, 62, 67, 87, 96, 105, 106,
106, 112, 116, 123, 128, 131, 135,
142, 146, 152, 161, 165, 171, 176,
192, 197, 201, 207, 214, 226, 232,
241, 244, 263, 275, 290, 294, 298

FDistributionNoncentral, 10, 11, 17, 21,
24, 28, 34, 38, 43, 46, 58, 62, 67, 87,
96, 105, 106, 110, 110, 116, 123,
128, 131, 135, 142, 146, 152, 161,
165, 171, 176, 192, 197, 201, 207,
214, 226, 232, 241, 244, 263, 275,
290, 294, 298

Fisk (Loglogistic), 167
Frechet, 10, 11, 17, 21, 24, 28, 34, 38, 43, 46,

58, 62, 67, 87, 96, 105, 106, 110,
112, 113, 123, 128, 131, 135, 142,
146, 152, 161, 165, 171, 176, 192,
197, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298

FunctionImputation, 51, 59, 71–74, 101,
117, 136, 184, 188, 208, 270, 286

Gamma, 10, 11, 17, 21, 24, 28, 34, 38, 43, 46,
58, 62, 67, 87, 96, 105, 106, 110,
112, 116, 118, 128, 131, 135, 142,
146, 152, 161, 165, 171, 176, 192,
197, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298

Gaussian (Normal), 197
generalPNorm, 123
Geometric, 11, 17, 21, 24, 28, 34, 38, 43, 46,

58, 67, 87, 90, 96, 106, 110, 112,
116, 123, 124, 131, 135, 142, 146,
152, 161, 165, 171, 176, 187, 197,
201, 207, 214, 226, 232, 241, 244,
263, 275, 290, 294, 298

Gompertz, 10, 11, 17, 21, 24, 28, 34, 38, 43,
46, 58, 62, 67, 87, 96, 105, 106, 110,
112, 116, 123, 128, 129, 135, 142,
146, 152, 161, 165, 171, 176, 192,

304 INDEX

197, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298

graphics::layout(), 208
graphics::par(), 208
Gumbel, 10, 11, 17, 21, 24, 28, 34, 38, 43, 46,

58, 62, 67, 87, 96, 105, 106, 110,
112, 116, 123, 128, 131, 131, 142,
146, 152, 161, 165, 171, 176, 192,
197, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298

huberize, 136
HuberizedDistribution, 48, 80, 136, 136,

181, 219, 271, 284
Hypergeometric, 11, 17, 21, 24, 28, 34, 38,

43, 46, 58, 67, 87, 90, 96, 106, 110,
112, 116, 123, 128, 131, 135, 138,
146, 152, 161, 165, 171, 176, 187,
197, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298

integrate, 51
InverseGamma, 10, 11, 17, 21, 24, 28, 34, 38,

43, 46, 58, 62, 67, 87, 96, 105, 106,
110, 112, 116, 123, 128, 131, 135,
142, 142, 152, 161, 165, 171, 176,
192, 197, 201, 207, 214, 226, 232,
241, 244, 263, 275, 290, 294, 298

InverseGaussian (Wald), 286
InverseNormal (Wald), 286
InverseWeibull (Frechet), 113

Kernel, 146, 156

Laplace, 10, 11, 17, 21, 24, 28, 34, 38, 43, 46,
58, 62, 67, 87, 96, 105, 106, 110,
112, 116, 123, 128, 131, 135, 142,
146, 148, 161, 165, 171, 176, 192,
197, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298

length.VectorDistribution, 153
lines.Distribution, 153, 208
listDecorators, 77, 154
listDecorators(), 54
listDistributions, 155
listDistributions(), 81, 178, 215, 279
listKernels, 156
listWrappers, 78, 156
Logarithmic, 11, 17, 21, 24, 28, 34, 38, 43,

46, 58, 67, 87, 90, 96, 106, 110, 112,

116, 123, 128, 131, 135, 142, 146,
152, 157, 165, 171, 176, 187, 197,
201, 207, 214, 226, 232, 241, 244,
263, 275, 290, 294, 298

Loggaussian (Lognormal), 171
Logistic, 10, 11, 17, 21, 24, 28, 34, 38, 43,

46, 58, 62, 67, 87, 96, 105, 106, 110,
112, 116, 123, 128, 131, 135, 142,
146, 152, 161, 161, 171, 176, 192,
197, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298

LogisticKernel, 53, 92, 165, 203, 222, 233,
235, 265, 267, 269, 277

Loglogistic, 10, 11, 17, 21, 24, 28, 34, 38,
43, 46, 58, 62, 67, 87, 96, 105, 106,
110, 112, 116, 123, 128, 131, 135,
142, 146, 152, 161, 165, 167, 176,
192, 197, 201, 207, 214, 226, 228,
232, 241, 244, 263, 275, 290, 294,
298

Lognormal, 10, 11, 17, 21, 24, 28, 34, 38, 43,
46, 58, 62, 67, 87, 96, 105, 106, 110,
112, 116, 123, 128, 131, 135, 142,
146, 152, 161, 165, 171, 171, 192,
197, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298

makeUniqueDistributions, 176
matrix, 11
MixtureDistribution, 12, 13, 48, 80, 137,

177, 182, 219, 227, 271, 284
mixturiseVector, 182
Multinomial, 17, 28, 34, 58, 62, 67, 87, 90,

128, 142, 161, 183, 192, 197, 298
MultivariateNormal, 10, 21, 24, 38, 43, 46,

62, 90, 96, 105, 110, 112, 116, 123,
131, 135, 146, 152, 165, 171, 176,
187, 188, 201, 207, 214, 226, 232,
241, 244, 263, 275, 290, 294

NegativeBinomial, 11, 17, 21, 24, 28, 34, 38,
43, 46, 58, 67, 87, 90, 96, 106, 110,
112, 116, 123, 128, 131, 135, 142,
146, 152, 161, 165, 171, 176, 187,
192, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298

Normal, 10, 11, 17, 21, 24, 28, 34, 38, 43, 46,
58, 62, 67, 87, 96, 105, 106, 110,
112, 116, 123, 128, 131, 135, 142,

INDEX 305

146, 152, 161, 165, 171, 176, 192,
197, 197, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298

NormalKernel, 53, 92, 167, 201, 222, 233,
235, 265, 267, 269, 277

par, 208
ParameterSet, 253, 254
Pareto, 10, 11, 17, 21, 24, 28, 34, 38, 43, 46,

58, 62, 67, 87, 96, 105, 106, 110,
112, 116, 123, 128, 131, 135, 142,
146, 152, 161, 165, 171, 176, 192,
197, 201, 203, 214, 226, 232, 241,
244, 263, 275, 290, 294, 298

plot.Distribution, 153, 154, 207, 209, 210,
220

plot.VectorDistribution, 209
Poisson, 10, 11, 17, 21, 24, 28, 34, 38, 43, 46,

58, 62, 67, 87, 96, 105, 106, 110,
112, 116, 123, 128, 131, 135, 142,
146, 152, 161, 165, 171, 176, 192,
197, 201, 207, 210, 226, 232, 241,
244, 263, 275, 290, 294, 298

pracma::gammaz(), 134
ProductDistribution, 12, 13, 48, 80, 137,

181, 214, 227, 271, 284

qqplot, 220
quantile, 220
Quartic, 53, 92, 167, 203, 221, 233, 235, 265,

267, 269, 277

R6, 8, 14, 19, 23, 25, 30, 35, 40, 44, 47, 56, 60,
64, 69, 77, 79, 83, 88, 93, 102, 107,
111, 114, 120, 125, 130, 132, 137,
139, 143, 146, 149, 158, 162, 166,
168, 172, 177, 184, 189, 194, 198,
202, 204, 211, 215, 224, 228, 230,
233, 234, 238, 242, 260, 270, 272,
278, 287, 291, 295

Rayleigh, 10, 11, 17, 21, 24, 28, 34, 38, 43,
46, 58, 62, 67, 87, 96, 105, 106, 110,
112, 116, 123, 128, 131, 135, 142,
146, 152, 161, 165, 171, 176, 192,
197, 201, 207, 214, 223, 232, 241,
244, 263, 275, 290, 294, 298

rep.Distribution, 227

sample, 29, 82, 87, 294

SDistribution, 7, 13, 18, 22, 24, 29, 35, 39,
43, 55, 59, 63, 81, 82, 87, 92, 101,
106, 110, 113, 119, 124, 129, 131,
138, 142, 148, 155, 157, 161, 167,
171, 183, 188, 193, 197, 203, 210,
223, 227, 229, 237, 242, 259, 271,
286, 290, 294

set.seed, 81
set.seed(), 236
ShiftedLoglogistic, 10, 11, 17, 21, 24, 28,

34, 38, 43, 46, 58, 62, 67, 87, 96,
105, 106, 110, 112, 116, 123, 128,
131, 135, 142, 146, 152, 161, 165,
171, 176, 192, 197, 201, 207, 214,
226, 228, 241, 244, 263, 275, 290,
294, 298

Sigmoid, 53, 92, 167, 203, 222, 232, 235, 265,
267, 269, 277

Silverman, 53, 92, 167, 203, 222, 233, 234,
265, 267, 269, 277

simulateEmpiricalDistribution, 82, 87,
236

skewType, 236
StudentT, 10, 11, 17, 21, 24, 28, 34, 38, 43,

46, 58, 62, 67, 87, 96, 105, 106, 110,
112, 116, 123, 128, 131, 135, 142,
146, 152, 161, 165, 171, 176, 192,
197, 201, 207, 214, 226, 232, 237,
244, 263, 275, 290, 294, 298

StudentTNoncentral, 10, 11, 17, 21, 24, 28,
34, 38, 43, 46, 58, 62, 67, 87, 96,
105, 106, 110, 112, 116, 123, 128,
131, 135, 142, 146, 152, 161, 165,
171, 176, 192, 197, 201, 207, 214,
226, 232, 241, 241, 263, 275, 290,
294, 298

survival, 72
SymmetricTriangular (Triangular), 258

testContinuous, 244
testDiscrete, 245
testDistribution, 245
testDistributionList, 246
testLeptokurtic, 247
testMatrixvariate, 248
testMesokurtic, 249
testMixture, 250
testMultivariate, 250
testNegativeSkew, 251

306 INDEX

testNoSkew, 252
testParameterSet, 253
testParameterSetList, 254
testPlatykurtic, 255
testPositiveSkew, 256
testSymmetric, 257
testUnivariate, 257
Triangular, 10, 11, 17, 21, 24, 28, 34, 38, 43,

46, 58, 62, 67, 87, 96, 105, 106, 110,
112, 116, 123, 128, 131, 135, 142,
146, 152, 161, 165, 171, 176, 192,
197, 201, 207, 214, 226, 232, 241,
244, 258, 275, 290, 294, 298

TriangularKernel, 53, 92, 167, 203, 222,
233, 235, 264, 267, 269, 277

Tricube, 53, 92, 167, 203, 222, 233, 235, 265,
265, 269, 277

Triweight, 53, 92, 167, 203, 222, 233, 235,
265, 267, 267, 277

truncate, 269
TruncatedDistribution, 48, 80, 137, 181,

219, 269, 269, 284

Uniform, 10, 11, 17, 21, 24, 28, 34, 38, 43, 46,
58, 62, 67, 87, 96, 105, 106, 110,
112, 116, 123, 128, 131, 135, 142,
146, 152, 161, 165, 171, 176, 192,
197, 201, 207, 214, 226, 232, 241,
244, 263, 271, 290, 294, 298

UniformKernel, 53, 92, 167, 203, 222, 233,
235, 265, 267, 269, 276

VectorDistribution, 11–13, 28, 29, 48,
72–74, 80, 81, 99, 100, 137, 153,
178–182, 209, 215–219, 227, 271,
277, 279, 282–284

Wald, 10, 11, 17, 21, 24, 28, 34, 38, 43, 46, 58,
62, 67, 87, 96, 105, 106, 110, 112,
116, 123, 128, 131, 135, 142, 146,
152, 161, 165, 171, 176, 192, 197,
201, 207, 214, 226, 232, 241, 244,
263, 275, 286, 294, 298

Weibull, 10, 11, 17, 21, 24, 28, 34, 38, 43, 46,
58, 62, 67, 87, 96, 105, 106, 110,
112, 116, 123, 128, 131, 135, 142,
146, 152, 161, 165, 171, 176, 192,
197, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 290, 298

WeightedDiscrete, 11, 17, 21, 24, 28, 34, 38,
43, 46, 58, 67, 87, 90, 96, 106, 110,
112, 116, 123, 128, 131, 135, 142,
146, 152, 161, 165, 171, 176, 187,
197, 201, 207, 214, 226, 232, 241,
244, 263, 275, 290, 294, 294

	distr6-package
	Arcsine
	as.Distribution
	as.MixtureDistribution
	as.ProductDistribution
	as.VectorDistribution
	Bernoulli
	Beta
	BetaNoncentral
	Binomial
	c.Distribution
	Categorical
	Cauchy
	ChiSquared
	ChiSquaredNoncentral
	Convolution
	CoreStatistics
	Cosine
	decorate
	Degenerate
	Dirichlet
	DiscreteUniform
	distr6News
	Distribution
	DistributionDecorator
	DistributionWrapper
	distrSimulate
	dstr
	Empirical
	EmpiricalMV
	Epanechnikov
	Erlang
	exkurtosisType
	ExoticStatistics
	Exponential
	FDistribution
	FDistributionNoncentral
	Frechet
	FunctionImputation
	Gamma
	generalPNorm
	Geometric
	Gompertz
	Gumbel
	huberize
	HuberizedDistribution
	Hypergeometric
	InverseGamma
	Kernel
	Laplace
	length.VectorDistribution
	lines.Distribution
	listDecorators
	listDistributions
	listKernels
	listWrappers
	Logarithmic
	Logistic
	LogisticKernel
	Loglogistic
	Lognormal
	makeUniqueDistributions
	MixtureDistribution
	mixturiseVector
	Multinomial
	MultivariateNormal
	NegativeBinomial
	Normal
	NormalKernel
	Pareto
	plot.Distribution
	plot.VectorDistribution
	Poisson
	ProductDistribution
	qqplot
	Quartic
	Rayleigh
	rep.Distribution
	SDistribution
	ShiftedLoglogistic
	Sigmoid
	Silverman
	simulateEmpiricalDistribution
	skewType
	StudentT
	StudentTNoncentral
	testContinuous
	testDiscrete
	testDistribution
	testDistributionList
	testLeptokurtic
	testMatrixvariate
	testMesokurtic
	testMixture
	testMultivariate
	testNegativeSkew
	testNoSkew
	testParameterSet
	testParameterSetList
	testPlatykurtic
	testPositiveSkew
	testSymmetric
	testUnivariate
	Triangular
	TriangularKernel
	Tricube
	Triweight
	truncate
	TruncatedDistribution
	Uniform
	UniformKernel
	VectorDistribution
	Wald
	Weibull
	WeightedDiscrete
	[.VectorDistribution
	Index

