cccp: Cone Constrained Convex Problems

Routines for solving convex optimization problems with cone constraints by means of interior-point methods. The implemented algorithms are partially ported from CVXOPT, a Python module for convex optimization (see <> for more information).

Version: 0.3-1
Depends: R (≥ 3.0.1), methods
Imports: Rcpp (≥ 0.11.2)
LinkingTo: Rcpp, RcppArmadillo
Suggests: RUnit, numDeriv
Published: 2023-12-09
DOI: 10.32614/CRAN.package.cccp
Author: Bernhard Pfaff [aut, cre], Lieven Vandenberghe [cph] (copyright holder of cvxopt), Martin Andersen [cph] (copyright holder of cvxopt), Joachim Dahl [cph] (copyright holder of cvxopt)
Maintainer: Bernhard Pfaff <bernhard at>
License: GPL (≥ 3)
NeedsCompilation: yes
In views: Optimization
CRAN checks: cccp results


Reference manual: cccp.pdf


Package source: cccp_0.3-1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): cccp_0.3-1.tgz, r-oldrel (arm64): cccp_0.3-1.tgz, r-release (x86_64): cccp_0.3-1.tgz, r-oldrel (x86_64): cccp_0.3-1.tgz
Old sources: cccp archive

Reverse dependencies:

Reverse depends: FRAPO
Reverse imports: optiSolve
Reverse suggests: fairml, netmeta, optiSel
Reverse enhances: CVXR


Please use the canonical form to link to this page.