When modelling species distribution, there is most of the time an uncertainty of what is actually modelled :

the fundamental niche is most of the time unknown

and there might be an uncertainty in the realized niche, except in the case of an exhaustive sampling.

What can be evaluated is how much the modelisation results are consistent with what is known and observed, and how much variability is present in the results in function of modelling choices.

Variability - within the evaluation / importance of variables

Single and ensemble models can be evaluated by several available evaluation metrics, and the importance of variables can be calculated through several repetitions (see metric.eval and var.import parameters in BIOMOD_Modeling and BIOMOD_EnsembleModeling).

Variability in evaluation and importance values can come from the parametrisation of different elements of the modelling :

observed dataset,

through the number of repetitions of calibration / validation splitting,

illustrating the robustness of the computed model based on the data

pseudo-absence dataset,

through the number of repetitions of PA sampling,

to check the choice of the pseudo-absence strategy

modelling technique,

through the models selected, among 10 models available,

to spot the most adapted modelling methods

Variability - within the predictions

Making projections, either for single or ensemble models, can produce two additional sources of variability in results that can be explored through two parameters :

it produces a map of the studied area with, in each pixel, the number of variables whose value is outside the range of values used to calibrate the models.