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divide_conquer_mds Divide and Conquer MDS

Description

Performs Multidimensional Scaling for big datasets using a Divide and Conquer strategy. This
method can compute a MDS configuration even when the dataset is so large that classical MDS
methods (cmdscale) can not be run due to computational problems.

Usage

divide_conquer_mds(x, l, tie, k, dist_fn = stats::dist, ...)

Arguments

x A matrix with n individuals (rows) and q variables (columns).
l The largest value which allows classical MDS to be computed efficiently, i.e,

the largest value which makes cmdscale() be run without any computational
issues.

tie Number of points used to align the MDS solutions obtained by the division of x
into p submatrices. Recommended value: 2·k.

k Number of principal coordinates to be extracted.
dist_fn Distance function to be used for obtaining a MDS configuration.
... Further arguments passed to dist_fn function.

Details

In order to obtain a MDS configuration for the entire matrix x, it is needed to break the dataset into
p submatrices (Divide and Conquer strategy).
In order to obtain p, tie and l are taken into account: p=n/(l-tie). This allows to use cmdscale
function in every submatrix.
Taking into account that given a MDS solution, any rotation is another (valid) MDS solution, it is
needed a way to obtain the same coordinate system for all the partitions.
To achieve such a common coordinate system, the algorithm starts by taking the first partition and
calculating a MDS configuration as well as a subsample of size tie (from the partition, not from its
MDS configuration). These tie points will be used in order to force the other partitions to have the
same coordinate system as the first one.
Given a partition, the tie points are appended to it. After that, a MDS configuration is obtained.
Therefore, for these tie points there are two MDS solutions. In order to aligned them, Procrustes
parameters are obtained. These parameters are applied to the MDS configuration of the partition.
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Value

Returns a list containing the following elements:

points A matrix that consists of n individuals (rows) and k variables (columns) corresponding to
the MDS coordinates.

eigen The first k eigenvalues.

References

Delicado P. and C. Pachon-Garcia (2020). Multidimensional Scaling for Big Data. https://
arxiv.org/abs/2007.11919

Borg, I. and Groenen, P. (2005). Modern Multidimensional Scaling: Theory and Applications.
Springer.

Examples

set.seed(42)
x <- matrix(data = rnorm(4*10000), nrow = 10000) %*% diag(c(15, 10, 1, 1))
mds <- divide_conquer_mds(x = x, l = 200, tie = 2*2, k = 2, dist_fn = stats::dist)
head(cbind(mds$points, x[, 1:2]))
var(x)
var(mds$points)

fast_mds Fast MDS

Description

Performs Multidimensional Scaling for big datasets using a recursive algorithm. This method
can compute a MDS configuration even when the dataset is so large that classical MDS methods
(cmdscale) can not be run due to computational problems.

Usage

fast_mds(x, l, s, k, dist_fn = stats::dist, ...)

Arguments

x A matrix with n individuals (rows) and q variables (columns).

l The largest value which allows classical MDS to be computed efficiently, i.e,
the largest value which makes cmdscale() be run without any computational
issues.

s Number of points used to align the MDS solutions obtained by the division of x
into p submatrices. Recommended value: 2·k.

k Number of principal coordinates to be extracted.

dist_fn Distance function to be used for obtaining a MDS configuration.

... Further arguments passed to dist_fn function.

https://arxiv.org/abs/2007.11919
https://arxiv.org/abs/2007.11919
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Details

In order to obtain a MDS configuration for the entire matrix x, it is partitioned into p submatrices,
where p=l/s.

For every partition cmdscale is applied if the number of observations is less than l. Otherwise,
fast_mds is called. Notice that in this part is where this algorithm becomes a recursive one.

Once every submatrix has its own MDS configuration, s (random) points are taken from every
partition of x. These points are put into a matrix M. Notice that M has s·p rows and q columns.

After that, a MDS configuration for M is obtained. So, there are 2 configurations for the s points:
one from performing MDS over every partition and another one from M. This allows to compute
Procrustes (alignment method) so that all the MDS solutions share the same coordinate system.

Value

Returns a list containing the following elements:

points A matrix that consists of n individuals (rows) and k variables (columns) corresponding to
the MDS coordinates.

eigen The first k eigenvalues.

References

Tynia, Y., L. Jinze, M. Leonard, and W. Wei (2006). A fast approximation to multidimensional
scaling. Proceedings of the ECCV Workshop on Computation Intensive Methods for Computer
Vision (CIMCV). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.79.2445

Borg, I. and Groenen, P. (2005). Modern Multidimensional Scaling: Theory and Applications.
Springer.

Examples

set.seed(42)
x <- matrix(data = rnorm(4*10000), nrow = 10000) %*% diag(c(15, 10, 1, 1))
mds <- fast_mds(x = x, l = 200, s = 2*2, k = 2, dist_fn = stats::dist)
head(cbind(mds$points, x[, 1:2]))
var(x)
var(mds$points)

gower_interpolation_mds

MDS based on Gower interpolation formula

Description

Performs Multidimensional Scaling for big datasets using Gower interpolation formula. This method
can compute a MDS configuration even when the dataset is so large that classical MDS methods
(cmdscale) can not be run due to computational problems.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.79.2445
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Usage

gower_interpolation_mds(x, l, k, dist_fn = stats::dist, ...)

Arguments

x A matrix with n individuals (rows) and q variables (columns).

l The largest value which allows classical MDS to be computed efficiently, i.e,
the largest value which makes cmdscale() be run without any computational
issues.

k Number of principal coordinates to be extracted.

dist_fn Distance function to be used for obtaining a MDS configuration.

... Further arguments passed to dist_fn function.

Details

Gower interpolation formula is the central piece of this algorithm since it allows to add a new set
of points to an existing MDS configuration so that the new one has the same coordinate system.

Given the matrix x with n individuals (rows) and q variables (columns), a submatrix based on a
random sample of l individuals is taken and it is used to compute a MDS configuration.

The remaining part of x is divided into p=(n-l)/l submatrices. For every submatrix, it is obtained
a MDS configuration by means of Gower interpolation formula and the first (random) submatrix.
Every MDS configuration is appended to the existing one so that, at the end of the process, a MDS
configuration for x is built.

Value

Returns a list containing the following elements:

points A matrix that consists of n individuals (rows) and k variables (columns) corresponding to
the MDS coordinates.

eigen The first k eigenvalues.

References

Gower, J.C. and D.J, Hand (1995). Biplots. Volume 54. CRC Press.

Borg, I. and Groenen, P. (2005). Modern Multidimensional Scaling: Theory and Applications.
Springer.

Examples

set.seed(42)
x <- matrix(data = rnorm(4*10000), nrow = 10000) %*% diag(c(15, 10, 1, 1))
mds <- gower_interpolation_mds(x = x, l = 200, k = 2, dist_fn = stats::dist)
head(cbind(mds$points, x[, 1:2]))
var(x)
var(mds$points)
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