Package ‘GaDiFPT’

February 19, 2015
Type Package
Title First Passage Time Simulation for Gaussian Diffusion Processes
Version 1.0
Date 2015-01-16
Author A. Buonocore, M.F. Carfora
Maintainer Maria Francesca Carfora <f.carfora@iac.cnr.it>

Description In this package we consider Gaussian Diffusion processes and smooth thresholds. Af-
ter evaluating the mean of the process to check the subthreshold regimen hypothe-
sis, the FPT density function is reconstructed via the numerical quadrature of the integral equa-
tion in (Buonocore 1987); first passage times are also generated by the method in (Buono-
core 2014) and results are compared. The timestep of the simulations can iteratively be re-
fined. User should provide the functional form for the drift and the infinitesimal vari-
ance in the script 'userfunc.R' and for the threshold in the script 'userthresh.R'. All the parame-
ters required by the implementation are to be set in the script 'userparam.R'. Exam-
ple scripts for common drifts and thresholds are given.

License GPL-2

NeedsCompilation no

Repository CRAN

Date/Publication 2015-02-17 19:43:09

R topics documented:

GaDiFPT-package e 2
builtfunc L 3
diffusion L 4
examples 6
FPTdensity_byint e 8
FPTsimul e 9
Iputlist L e e e 10
plot FPTdensity 11
TES_SUMMALY . .« o o v e oot v e e e et e e e e e e e e e e 12
VECIOTSELUD .« v v v v o e 13
Index 15

2 GaDiFPT-package

GaDiFPT-package First Passage Time Simulation for Gauss Diffusion Processes

Description

We consider Gaussian Diffusion processes and smooth thresholds. After evaluating the mean of the
process to check the subthreshold regimen hypothesis, the FPT density function is reconstructed;
first passage times are also generated by an algorithm based on the hazard rate method and results
are compared. The timestep of the simulations can iteratively be refined. User should provide the
functional form for the drift and the infinitesimal variance of the considered diffusion process along
with the functional form for the threshold. Example scripts for common drifts and thresholds are
given.

Details

Package: GaDiFPT
Type: Package
Version: 1.0
Date: 2015-01-16
License: GPL-2

The GaDiFPT package allows to approximate efficiently the f.p.t. density for a diffusion process
through a continuous time-dependent boundary. First, the coefficients of the diffusion process under
consideration and the related boundary must be defined in a script built according to the structure
of the examples reported in the demo folder. Parameters setting the initial time and state, the final
time and the initial resolution are also to be given in the same script. Then, the vectorsetup
function will be used to calculate mean and covariance for the specified process. A plot of both the
estimated mean of the process (with confidence interval) and the boundary is produced for the user
to check the subthreshold regimen. Thus, the function FPTdensity_byint constructs a numerical
approximation of the First Passage Time density function. Plots of the FPT density, of the FPT
distribution function and of the instantaneous firing rate are produced. Then, the function FPTsimul
generates a sample of first passage times and compares the related histogram to the approximated
FPT density. The scripts Wiener and OrnUhl in the demo folder constitute skeleton examples of use
of the package for simulation of the classical Wiener and Ornstein-Uhlenbeck processes through
different boundaries. More compex examples are also given in OrnUhlCurrent and Logistic
scripts.

Author(s)

A. Buonocore, M. F. Carfora

Maintainer: Maria Francesca Carfora <f.carfora@iac.cnr.it>

builtfunc

References

Buonocore, A., Caputo, L., Pirozzi, E., and Carfora, M.F., A simple algorithm to generate firing
times for Leaky Integrate-and-Fire neuronal model. Math Biosci Eng 11, 1 (2014), 1-10.

Buonocore, A., Nobile, A.~G., and Ricciardi, L.M., A new integral equation for the evaluation of
first-passage-time probability densities. Adv Appl Prob 19 (1987), 784-800.

builtfunc

Functions characterizing the Gaussian Diffusion process X(t) and the
considered threshold

Description

builtfunc evaluates all the functions describing a generic Gaussian Diffusion process X(t) (drift,
infinitesimal variance, mean, variance and first derivative of the transition density); it also evaluates
the threshold function and its time derivative, both required in the evaluation of the kernel function
of the Volterra integral equation for the FPT pdf (Buonocore 1987).

Usage

a(t)

b(t)

cc(t)

S(t)

Sp(t)

al(x, t)

a2(t)

mdt(t,y, tau)
vdt(t, tau)
fdt(x,t,y,tau)
psi (t, y, tau)

Arguments
X current value of the process X(t)
t current time
y previous value of the process X at time tau
tau previous time
Value
al gives the drift of the process as a(t)*x + b(t)
a2 gives the infinitesimal variance of the process as cc(t)
S gives the threshold

Sp gives the threshold time derivative

4 diffusion

mdt gives the mean of the transition pdf of the process

vdt gives the variance of the transition pdf of the process

fdt gives the transition pdf of the process

psi gives the kernel for evaluating the FPT pdf of the process via numerical integra-

tion of the Volterra integral equation

Author(s)
A. Buonocore, M.F. Carfora

Examples
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,

##--or do help(data=index) for the standard data sets.

delta <- 0.5
time.vec <- seq(@, by=delta, 100)

linear threshold
Scost <- 6
Sslope <- 0.2
user provided function (see examples in demo folder)
SSS <- function(t) {
SSS <- Scost + Sslopext
3
Slin <- S(time.vec)
plot(time.vec,Slin,type="'1"',6xlab="time',ylab="threshold' ,main="'linear threshold')

periodic threshold

SO <- 0
S1 <=2
Sfr <- 0.5

user provided function (see examples in demo folder)
SSS <- function(t) {
SSS <- S1*cos(Sfr*t+Se)
3
Sper <- S(time.vec)
plot(time.vec,Sper,type="'1"',6xlab="time',ylab="threshold',main="'periodic threshold')

diffusion Diffusion processes

Description

diffusion creates an object of class “diffusion” from the set of provided values. is.diffusionchecks
if its argument is an object of class “diffusion”. print shows an object of class “diffusion”.

diffusion 5

Usage

diffusion(text)
is.diffusion(obj)
S3 method for class 'diffusion'

print(x, ...)
Arguments
text a character vector of length two, containing the infinitesimal mean and infinites-
imal variance of the process
obj an R object to be tested
X an object of class “diffusion”
additional arguments potentially passed (currently none is considered).
Value

diffusion returns an object of class “diffusion” that defines a family of diffusion processes. It is a
two-component list:

mean character of length 1 with the mathematical expression of the infinitesimal mean
of the process;

var character of length 1 with the mathematical expression of the infinitesimal vari-
ance of the process.

is.diffusion returns TRUE or FALSE depending on whether its argument is an object of class “dif-
fusion” or not. print.diffusion shows a brief description of the process reporting the functional
form of its infinitesimal mean and variance.

Author(s)

A. Buonocore, M.F. Carfora

Examples

Creating a "diffusion” object representing a Wiener process

Wiener <- diffusion(c("mu”,"sigma2"))

Creating a "diffusion” object representing
an Ornstein-Uhlenbeck process with an injected current

OrnUhlCur <- diffusion(c("-x/theta + mu + i@*exp(-(t-t@)/thetal)"”,"sigma2"))
testing diffusion objects

is.diffusion(Wiener)
is.diffusion(OrnUhlCur)

6 examples

examples Example scripts and user provided functions for the Gaussian Diffu-
sion Process

Description

For a generic Gaussian Diffusion process X(t) the drift can be written as a(t)*X(t)+b(t) and the
infinitesimal variance as cc(t)*2. User should provide the functional form for a(t),b(t) and cc(t) in
the main script. The threshold to be crossed has to be also provided through the function S(t) and its
derivative Sp(t) in the same script. Examples of such a script are given for a Wiener process with or
without drift through different thresholds (scripts Wiener, Wiener1, WienerDrift) for an Ornstein
Uhlenbeck process also in presence of an additional current (scripts OrnUhl, OrnUhlCurrent) and
for a more complex process with time-varying coefficients (Logistic).

Usage

Wiener.R

Author(s)
A. Buonocore, M.F. Carfora

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

Wiener process through a periodic boundary: the process is built, its FPT pdf
evaluated by numerical quadrature and a train of crossing times is simulated.
Results are shown and saved to a file

library(GaDiFPT)

cat (" #HHHHHHHHAHRAHEHHAHHHAAAEA AR \n')

cat ('#H#H#H First Passage Time Simulation #i#H#HH \n')
cat (' #iH#H for the Wiener process #HHE \n'")
cat (' #iH##H through a periodic boundary ##H#HH \n')

cat (" HEHEHHEHAHHBHAAHBHAAHAERAHRHAAHAAHAHRHHAHAAHEEAAHAERAHAEAAHAEAEE \n \n \n ")

non

Wiener1 <- diffusion(c("mu”,"sigma2"))
mu <- 0.0
sigma2 <- 1.0

SO <- 10
S1 <- 3
Sfr <- 0.005

examples

Stype <- "periodic”

t0 <- 0.0

X0 <- 0.0

Tfin <- 1000

deltat <- 0.5

N <- floor((Tfin - t@)/deltat)
M <- 3000

quadflag <- 1
RStudioflag <- TRUE

param <- inputlist(mu,sigma2,Stype,t0,x0,Tfin,deltat,M,quadflag,RStudioflag)
fileout <- "results_Wienerl.out”

aaa <- function(t) {
aaa <- 0.0 + 0.0xt
}

bbb <- function(t) {
bbb <- mu + 0.0x%t
3

SSS <- function(t) {
SSS <- S@+S1*cos(Sfrxt)
3

SSSp <- function(t) {
SSSp <- -S1*Sfrxsin(Sfrxt)
}

mp <- numeric(N+1)
up <- numeric(N+1)
vp <- numeric(N+1)
app <- numeric(N)

tempi <- seq(t@, by=deltat, length=N+1)

dum <- vectorsetup(param)
mp <- dum[,1]
up <- dum[,2]
vp <- dum[, 3]

splot <- S(tempi)

mpl <- mp - sqrt(2*sigma2)

mp2 <- mp + sqrt(2xsigma2)

matplot(tempi, cbind(mp,mpl1,mp2,splot),type="1",1ty=c(1,2,2,1),1lwd=1,
main="mean of the process vs. threshold”,6 xlab="time(ms)",ylab="")

legend("bottomright”,c("mean”, "threshold”),
lty=c(1,1),col=c("black”, "blue"))

8 FPTdensity_byint

Nmax <- which.min(abs(mp[2: (N+1)]1-mp[1:N]1))

N1 <- N
if (quadflag == @) N1 <- max(c(Nmax,N/4))

N1pl <- N1+1

answer <- FPTdensity_byint(param,N1)
plot(answer)

spikes <- FPTsimul(answer,M)
histplot(spikes,answer)

res_summary(answer,M, fileout)

FPTdensity_byint Evaluation of the FPT density and distribution functions

Description

The FPT density g0 and distribution function gg0 are evaluated up to a fixed time T on N1max
gridpoints by numerical integration of the Volterra integral equation given in Buonocore 1987. Note
that this time may not correspond to the final time Tfin when full reconstruction of the FPT density
by quadrature is not required (quadflag set to O in the input parameters list).

Usage

FPTdensity_byint(obj,n1max)

Arguments
obj An “inputlist” class object yielding all the input parameters
n1max Total number of gridpoints in the evaluation procedure
Value

Values are returned as an object of class “FPTdensity” yielding the timegrid and the corresponding
values of the FPT density and FPT distribution.

Author(s)
A. Buonocore, M.F. Carfora

References

Buonocore, A., Nobile, A.G., and Ricciardi, L.M., A new integral equation for the evaluation of
first-passage-time probability densities. Adv Appl Prob 19 (1987), 784-800.

FPTsimul 9

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

Continuing the Wiener() example:

Nmax <- which.min(abs(mp[2: (N+1)]1-mp[1:N]1))

N1 <= N
if (quadflag == @) N1 <- max(c(Nmax,N/4))
N1p1 <- N1+1
answer <- FPTdensity_byint(param,N1)
plot(answer)
FPTsimul Simulation of FPT by the Hazard Rate Method
Description

FPTsimul generates M spikes (times of first boundary crossing) for the Gaussian Diffusion proces
X(t) by implementing the Hazard Rate Method, based on the instantaneous firing rate, defined as
the ratio between the probability density function and the survival function of the process. The
asymptotic firing rate is also estimated to shorten computations. histplot then produced an his-
togram of the simulated times and plot it against the approximated FPT density as obtained by
FPTdensity_byint

Usage

FPTsimul (obj,M)
histplot(obj1,0bj)

Arguments
obj An “FPTdensity” class object yielding the numerical approximation of the FPT
density and the FPT distribution on a given timegrid
M The number of crossing times to be simulated
obj1 A vector of simulated crossing times as obtained by a call to FPTsimul.
Value

FPTsimul returns a vector containing the simulated crossing times; histplot produces an his-
togram plot of these crossing times with the approximated FPT density superimposed

Author(s)
A. Buonocore, M.F. Carfora

10

References

inputlist

A. Buonocore, L. Caputo, E. Pirozzi, M.F. Carfora, A Simple Algorithm to Generate Firing Times
for Leaky Integrate-and-Fire Neuronal Model, Math Biosci Eng,11, 1-10 (2014).

Examples
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,

##--or do help(data=index) for the standard data sets.

Continuing the Wiener() example:

spikes <- FPTsimul (answer,M)
histplot(spikes,answer)

inputlist

User provided parameters

Description

inputlist creates an object of class “inputlist” from the given set of provided values. print shows
an object of class “inputlist”.

Usage

inputlist(m,s,Sty,tini,xini,Tend,delta,Ntime, quadfl,RSf1)
S3 method for class 'inputlist'

print(x,

Arguments

m
s

Sty
tini
xini
Tend
delta
Ntime
quadfl

RSf1

gives the constant part of the infinitesimal drift of the process
gives the infinitesimal variance of the process

gives the functional type of the considered threshold

gives the initial time in milliseconds

gives the value of the resting potential of the process

gives the final time in milliseconds

gives the timestep in milliseconds

gives the total number of crossing times to be simulated

is a flag denoting the requirement for full reconstruction of the FPT density by
numerical integration of the Volterra equation

is a technical flag to manage opening and closing of plot windows in case RStu-
dio interface is used

an object of class “inputlist”

additional arguments potentially passed (currently none is considered).

plot. FPTdensity 11

Value

inputlist returns an object of class “inputlist” yielding the user-provided parameters as a named
list. print.inputlist shows a brief summary of the user provided parameters.

Author(s)
A. Buonocore, M.F. Carfora

Examples

Creating a list of parameters for the Wiener process

mu <- 0.0

sigma2 <- 1.0

Stype <- "constant”
t0 <- 0.0

X0 <- 0.0

Tfin <- 4000

deltat <- 1.0

M <- 1000

quadflag <- 1
RStudioflag <- TRUE

building an object of \dQuote(inputlist) class and printing a summary of its parameters
param <- inputlist(mu,sigma2,Stype,t0,x0,Tfin,deltat,M,quadflag,RStudioflag)

print(param)

plot.FPTdensity Plotting Method for FPTdensity objects

Description

This function creates the plots of the approximate density function and the approximate distribution
function for the FPT problem at hand. It also creates an additional plot for the corresponding
hazard rate function, representing the instantaneous rate of the crossing occurrence at a certain
time, conditional on its not occurring before that time.

Usage
S3 method for class 'FPTdensity'
plot(x, ...)
Arguments
X an object of class “FPTdensity”, a result of a call to FPTdensity_byint function

additional arguments potentially passed (currently none is considered).

12 res_summary

Author(s)

A. Buonocore, M.F. Carfora

res_summary User provided parameters

Description

res_summary writes

Usage

res_summary (obj,Nspikes, fileout)

Arguments
obj an object of class “FPTdensity”, a result of a call to FPTdensity_byint function
yielding the approximated values of the FPT density and distribution
Nspikes the total number of simulated crossing times
fileout a character indicating the name of the file where the results have to be written.
Value

res_summary writes on file a table with the timesteps and the corresponding values of the FPT
density and distribution; it also writes the sequence of the generated crossing times. It also evaluates
statistics of the crossing time (mean, standard deviation and median) and send the report to the
command window.

Author(s)

A. Buonocore, M.F. Carfora

Examples

examples are shown as part of the 'examples.Rd' ones

vectorsetup 13

vectorsetup Setup of the mean and covariance vectors for the Gaussian Diffusion
process

Description

vectorsetup evaluates the vectors mp (mean of the process) and the two covariance factors up and
vp (i.e. covariance of the process is given by up*vp) in the interval [t0, Tfin] with timestep deltat

Usage

vectorsetup(obj)
Arguments

obj An “inputlist” class object yielding all the input parameters
Value

Values are returned as a matrix (mp,up,vp)

Author(s)
A. Buonocore, M.F. Carfora

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

Continuing the Wiener() example:

#iHH INITIALIZATION OF VECTORS
tempi <- numeric(N+1)

mp <- numeric(N+1)

up <- numeric(N+1)

vp <- numeric(N+1)

dummy vector
app <- numeric(N)

fizizisd EVALUATION OF MEAN AND COVARIANCE OF THE PROCESS
tempi <- seq(t@, by=deltat, length=N+1)

dum <- vectorsetup(param)

14

mp <- dum[,1]
up <- dum[,2]
vp <- dum[, 3]

plot of S and m

splot <- S(tempi)

mpl <- mp - sqgrt(2xsigma2)

mp2 <- mp + sqgrt(2xsigma2)

matplot(tempi, cbind(mp,mp1,mp2,splot),type="1",1ty=c(1,2,2,1),1lwd=1,
main="mean of the process vs. threshold”,xlab="time(ms)",ylab="")

legend("bottomright”,c("mean”, "threshold”),
1ty=c(1,1),col=c("black”,"blue"))

vectorsetup

Index

+Topic package print.diffusion (diffusion), 4
GaDiFPT-package, 2 print.inputlist (inputlist), 10

a(builtfunc), 3
al (builtfunc), 3
a2 (builtfunc), 3

b (builtfunc), 3
builtfunc, 3

cc (builtfunc), 3

deltat (inputlist), 10
diffusion, 4

examples, 6

fdt (builtfunc), 3
FPTdensity_byint, 2,8, 11, 12
FPTsimul, 2,9

GaDiFPT (GaDiFPT-package), 2
GaDiFPT-package, 2

histplot (FPTsimul), 9

inputlist, 10
is.diffusion (diffusion), 4

Logistic, 2
Logistic (examples), 6

M(inputlist), 10
mdt (builtfunc), 3
mp (vectorsetup), 13

ornUhl, 2

OrnUhl (examples), 6
OornUhlCurrent, 2
OrnUhlCurrent (examples), 6

plot.FPTdensity, 11

psi (builtfunc), 3
quadflag (inputlist), 10

res_summary, 12
RStudioflag (inputlist), 10

S (builtfunc), 3
Sp (builtfunc), 3

t0 (inputlist), 10
Tfin (inputlist), 10

up (vectorsetup), 13

vdt (builtfunc), 3
vectorsetup, 2, 13
vp (vectorsetup), 13

Wiener, 2

Wiener (examples), 6
Wiener1 (examples), 6
WienerDrift (examples), 6

X0 (inputlist), 10

	GaDiFPT-package
	builtfunc
	diffusion
	examples
	FPTdensity_byint
	FPTsimul
	inputlist
	plot.FPTdensity
	res_summary
	vectorsetup
	Index

